POST-DEVELOPMENT

Point of Analysis A

South/Glade Side Units	
Typical Unit Impervious Footprint	Area (sf)
18'x35' (incl. 18'x5' porch)	630
28'x30' (incl. 28'x6' porch)	840
24'x34' (incl. 24'x6' porch)	816
Average	770
Typical 18'x34' Driveway (total to back of curb)	612
Total Typical Impervious Area per Unit	
(average+driveway)	1382

North/Village Side Units	
Typical Unit Impervious Footprint	Area (sf)
48'x48' (incl. variable porch)	2304
45'x63' (incl. variable porch)	2835
Average	2570
Typical 20'x37' Driveway (total to EP)	740
Typical 12'x12' Deck	144
Total Typical Impervious Area per Unit	
(average+driveway+deck)	3454

Typical Lot Impervious Area Estimates

South/Glade side dwelling unit assumed	
impervious area (sf):	1,382
North/Village side dwelling unit assumed	
impervious area (sf):	3,454

Hydrologic Soil Group B Dwelling Unit Impervious Estimate						
	South/Glade North/Village Total Impervious Area					
Drainage Area	No. units	Imperv. area (sf)	No. units	Imperv. area (sf)	(sf)	(ac.)
POST ONSITE TO POND B (S. DRY POND)	0	0	2	6,908	6,908	0.159
POSTDEV TO POND C (WETPOND)	8	11,056	0	0	11,056	0.254
POST ONSITE TO POND A (N. DRY POND)	0	0	5	17,270	17,270	0.396
Undetained	0	0	36	124,344	124,344	2.855

Hydrologic Soil Group C Dwelling Unit Impervious Estimate						
	South/Glade North/Village Total Impervious				rvious Area	
Drainage Area	No. units	Imperv. area (sf)	No. units	Imperv. area (sf)	(sf)	(ac.)
POST ONSITE TO POND B (S. DRY POND)	56	77,392	0	0	77,392	1.777
POSTDEV TO POND C (WETPOND)	69	95,358	0	0	95,358	2.189
POST ONSITE TO POND A (N. DRY POND)	0	0	0	0	0	0.000
Undetained	0	0	0	0	0	0.000

Drainage Area Runoff and Time of Concentration

Drainage Area: POST ONSITE TO POND A (N. DRY POND) POSTDEVELOPMENT

	Notes:					
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN ₁	В	Open space	61	3.56	217.30	
CN ₂	C	Open space	74	1.08	79.82	
CN ₃	В	Imperv. (measured)	98	0.42	40.81	
CN ₄	С	Imperv. (measured)	98	0.07	7.15	Impervious lot area calculated
CN ₅	В	Imperv. (est. lots)	98	0.40	38.81	on "Typical Lot Impervious
CN ₆	С	Imperv. (est. lots)	98	0.00	0.00	Area Estimate" table
CN ₇					0.00	elsewhere
CN ₈					0.00	
CN ₉					0.00	
CN ₁₀					0.00	
Total 5.53					383.89	
Composite CN =			69			

Time of Concentration, T _c						
2 yr. Precip. (in.) = 2.73						
				Roughness	Slope	Travel Time, T _t
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)
1	Other Tt	Estimate				10.0
2						
3						
4						
5						
6						
7						
8						
9						
10						
Total Time of Concentration, T _c (min.) =				10.0		

Runoff					
	1 Yr.	10 Yr.	100 Yr.		
Precipitation (in.), P	2.26	4.06	6.44		
Composite CN	69	69	69		
Storage (in.) S=1000/CN-10	4.49	4.49	4.49		
Initial abstraction (in.), I _a =0.2S	0.90	0.90	0.90		
Runoff depth (in.), $Q=(P-0.2S)^2/[(P-I_a)+S]$	0.32	1.31	3.06		
Runoff volume (ac-ft), RV = Q/12*A	0.15	0.60	1.41		
Flow rate (cfs), q _{peak} from hydrograph	1.78	10.10	24.37		
Hydrograph Number:	40				

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 40

POST ONSITE TO POND A

Hydrograph type	= SCS Runoff	Peak discharge	= 1.783 cfs
Storm frequency	= 1 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 6,554 cuft
Drainage area	= 5.530 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 40

POST ONSITE TO POND A

Hydrograph type	= SCS Runoff	Peak discharge	= 10.10 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 27,031 cuft
Drainage area	= 5.530 ac	Curve number	= 69
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 40

POST ONSITE TO POND A

Hydrograph type	= SCS Runoff	Peak discharge	= 24.37 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 63,352 cuft
Drainage area	= 5.530 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 6.44 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 41

POST TOTAL TO POND A

Hydrograph type Storm frequency	= Combine = 1 yrs	Peak discharge Time to peak	= 64.46 cfs = 726 min
Time interval	= 2 min	Hyd. volume	= 235,179 cuft
Inflow hyds.	= 7, 8, 40	Contrib. drain. area	= 19.590 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 41

POST TOTAL TO POND A

Hydrograph type =	Combine	Peak discharge	= 171.71 cfs
Storm frequency =	⊧ 10 yrs	Time to peak	= 726 min
Time interval =	2 min	Hyd. volume	= 671,126 cuft
Inflow hyds. =	: 7, 8, 40	Contrib. drain. area	= 19.590 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 41

POST TOTAL TO POND A

Hydrograph type	= Combine	Peak discharge	= 255.21 cfs
Storm frequency	= 100 yrs	l ime to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 1,343,252 cuft
Inflow hyds.	= 7, 8, 40	Contrib. drain. area	= 19.590 ac

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 4 - Pond A-Upgraded TOB Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 2018.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft))
0.00	2018.00	27	0	0	
1.00	2019.00	2,927	1,078	1,078	Proposed Pond A
2.00	2020.00	10,298	6,238	7,316	improvomonte:
3.00	2021.00	19,913	14,842	22,158	improvements.
4.00	2022.00	30,584	25,056	47,214	Increased storage
5.00	2023.00	43,395	36,800	84,014	
6.00	2024.00	47,862	45,606	129,619	volume, new discharge
7.00	2025.00	52,118	49,970	179,589	culvert, new outlet
8.00	2026.00	55,880	53,983	233,572	
9.00	2027.00	59,237	57,545	291,117	structure and outlet
10.00	2028.00	63,672	61,435	352,552	structure configuration
11.00	2029.00	68,439	66,035	418,586	Stradiard Configuration
12.00	2030.00	77,946	73,134	491,720	
13.00	2031.00	91,064	84,412	576,131	
14.00	2032.00	99,712	95,346	671,477	
15.00	2033.00	107,355	103,500	774,977	
16.00	2034.00	115,265	111,275	886,252	
17.00	2035.00	122,400	118,803	1,005,055	

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 30.00	12.00	Inactive	0.00	Crest Len (ft)	= 13.20	Inactive	1.50	0.00
Span (in)	= 30.00	12.00	24.00	0.00	Crest El. (ft)	= 2027.50	2029.50	2024.00	0.00
No. Barrels	= 1	1	2	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 2018.00	2018.01	2028.50	0.00	Weir Type	= 1	Broad	Rect	
Length (ft)	= 200.00	0.50	100.00	0.00	Multi-Stage	= Yes	No	Yes	No
Slope (%)	= 2.00	1.00	5.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by \	Net area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	2018.00	0.00	0.00	0.00		0.00	0.00	0.00				0.000
0.10	108	2018.10	0.03 ic	0.03 ic	0.00		0.00	0.00	0.00				0.032
0.20	216	2018.20	0.13 ic	0.13 ic	0.00		0.00	0.00	0.00				0.131
0.30	323	2018.30	0.29 ic	0.29 ic	0.00		0.00	0.00	0.00				0.292
0.40	431	2018.40	0.51 ic	0.51 ic	0.00		0.00	0.00	0.00				0.508
0.50	539	2018.50	0.77 ic	0.77 ic	0.00		0.00	0.00	0.00				0.774
0.60	647	2018.60	1.06 ic	1.06 ic	0.00		0.00	0.00	0.00				1.061
0.70	755	2018.70	1.39 ic	1.39 ic	0.00		0.00	0.00	0.00				1.389
0.80	863	2018.80	1.76 ic	1.76 ic	0.00		0.00	0.00	0.00				1.759
0.90	970	2018.90	2.10 ic	2.10 ic	0.00		0.00	0.00	0.00				2.097
1.00	1,078	2019.00	2.46 ic	2.40 ic	0.00		0.00	0.00	0.00				2.397
1.10	1,702	2019.10	2.61 ic	2.61 ic	0.00		0.00	0.00	0.00				2.612
1.20	2,326	2019.20	2.87 ic	2.81 ic	0.00		0.00	0.00	0.00				2.809
1.30	2,950	2019.30	3.02 ic	3.01 ic	0.00		0.00	0.00	0.00				3.013
1.40	3,573	2019.40	3.18 ic	3.18 ic	0.00		0.00	0.00	0.00				3.184
1.50	4,197	2019.50	3.35 ic	3.35 ic	0.00		0.00	0.00	0.00				3.352
1.60	4,821	2019.60	3.52 ic	3.52 ic	0.00		0.00	0.00	0.00				3.518
1.70	5,445	2019.70	3.68 ic	3.68 ic	0.00		0.00	0.00	0.00				3.681
1.80	6,068	2019.80	3.84 ic	3.84 ic	0.00		0.00	0.00	0.00				3.842
1.90	6,692	2019.90	4.00 ic	4.00 ic	0.00		0.00	0.00	0.00				4.001
2.00	7,316	2020.00	4.16 ic	4.16 ic	0.00		0.00	0.00	0.00				4.158
2.10	8,800	2020.10	4.34 ic	4.30 ic	0.00		0.00	0.00	0.00				4.298
2.20	10,284	2020.20	4.52 ic	4.43 ic	0.00		0.00	0.00	0.00				4.431
2.30	11,769	2020.30	4.56 ic	4.56 ic	0.00		0.00	0.00	0.00				4.564
2.40	13,253	2020.40	4.71 ic	4.71 ic	0.00		0.00	0.00	0.00				4.713

Pond A-Upgraded TOB Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
2.50	14,737	2020.50	4.90 ic	4.84 ic	0.00		0.00	0.00	0.00				4.837
2.60	16,221	2020.60	5.10 ic	4.96 ic	0.00		0.00	0.00	0.00				4.955
2.70	17,706	2020.70	5.10 ic	5.10 ic	0.00		0.00	0.00	0.00				5.097
2.80	19,190	2020.80	5.30 ic	5.21 ic	0.00		0.00	0.00	0.00				5.210
2.90	20,674	2020.90	5.33 ic	5.33 ic	0.00		0.00	0.00	0.00				5.331
3.00	22,158	2021.00	5.50 ic	5.45 ic	0.00		0.00	0.00	0.00				5.453
3.10	24,664	2021.10	5.56 ic	5.56 ic	0.00		0.00	0.00	0.00				5.559
3.20	27,169	2021.20	5.71 ic	5.69 ic	0.00		0.00	0.00	0.00				5.685
3.30	29,675	2021.30	5.93 ic	5.79 ic	0.00		0.00	0.00	0.00				5.786
3.40	32,181	2021.40	5.93 ic	5.91 ic	0.00		0.00	0.00	0.00				5.908
3.50	34,686	2021.50	6.14 ic	6.01 ic	0.00		0.00	0.00	0.00				6.005
3.60	37,192	2021.60	6.14 IC	6.12 IC	0.00		0.00	0.00	0.00				6.123
3.70	39,697	2021.70	6.36 IC	6.22 IC	0.00		0.00	0.00	0.00				6.217
3.80	42,203	2021.80	6.36 IC	6.33 IC	0.00		0.00	0.00	0.00				6.331
3.90	44,709	2021.90	6.42 IC	6.42 IC	0.00		0.00	0.00	0.00				6.422
4.00	47,214	2022.00	6.59 IC	6.53 IC	0.00		0.00	0.00	0.00				6.532
4.10	50,894	2022.10	0.03 IC	0.03 IC	0.00		0.00	0.00	0.00				0.027
4.20	54,574	2022.20	0.02 IC	6.73 IC	0.00		0.00	0.00	0.00				0.121
4.30	00,204 61 024	2022.30	0.03 IC	0.03 IC	0.00		0.00	0.00	0.00				0.020
4.40	65 614	2022.40	7.05 IC	0.92 IC	0.00		0.00	0.00	0.00				7 010
4.50	60 204	2022.50	7.05 IC	7.02 IC	0.00		0.00	0.00	0.00				7.019
4.00	72 074	2022.00	7.10 IC	7.10 IC	0.00		0.00	0.00	0.00				7.103
4.70	72,974	2022.70	7.20 IC	7.20 IC	0.00		0.00	0.00	0.00				7.200
4.00	80 334	2022.00	7.50 ic	7.29 IC	0.00		0.00	0.00	0.00				7 377
4.90	84 014	2022.90	7.52 ic	7.30 IC	0.00		0.00	0.00	0.00				7 /7/
5.00	88 574	2023.00	7.52 ic	7.56 ic	0.00		0.00	0.00	0.00				7 558
5.20	93 135	2023.10	7.76 ic	7.64 ic	0.00		0.00	0.00	0.00				7 644
5.30	97 695	2023.30	7 76 ic	7 74 ic	0.00		0.00	0.00	0.00				7 737
5 40	102 256	2023 40	7 81 ic	7 81 ic	0.00		0.00	0.00	0.00				7 815
5 50	106 817	2023 50	8 00 ic	7 90 ic	0.00		0.00	0.00	0.00				7 902
5.60	111.377	2023.60	8.00 ic	7.99 ic	0.00		0.00	0.00	0.00				7.992
5.70	115,938	2023.70	8.07 ic	8.07 ic	0.00		0.00	0.00	0.00				8.066
5.80	120,498	2023.80	8.25 ic	8.15 ic	0.00		0.00	0.00	0.00				8.152
5.90	125,059	2023.90	8.25 ic	8.24 ic	0.00		0.00	0.00	0.00				8.239
6.00	129,619	2024.00	8.31 ic	8.31 ic	0.00		0.00	0.00	0.00				8.311
6.10	134,616	2024.10	8.54 ic	8.38 ic	0.00		0.00	0.00	0.16				8.543
6.20	139,613	2024.20	9.01 ic	8.45 ic	0.00		0.00	0.00	0.45				8.892
6.30	144,610	2024.30	9.32 ic	8.50 ic	0.00		0.00	0.00	0.82				9.322
6.40	149,607	2024.40	9.82 ic	8.56 ic	0.00		0.00	0.00	1.26				9.821
6.50	154,604	2024.50	10.37 ic	8.61 ic	0.00		0.00	0.00	1.77				10.37
6.60	159,601	2024.60	11.14 ic	8.65 ic	0.00		0.00	0.00	2.32				10.97
6.70	164,598	2024.70	11.68 ic	8.70 ic	0.00		0.00	0.00	2.92				11.62
6.80	169,595	2024.80	12.31 ic	8.74 ic	0.00		0.00	0.00	3.57				12.31
6.90	174,592	2024.90	13.07 ic	8.78 ic	0.00		0.00	0.00	4.26				13.05
7.00	179,589	2025.00	13.91 ic	8.82 ic	0.00		0.00	0.00	4.99				13.81
7.10	184,988	2025.10	14.74 ic	8.85 ic	0.00		0.00	0.00	5.76				14.62
7.20	190,386	2025.20	15.57 ic	8.89 ic	0.00		0.00	0.00	6.57				15.45
7.30	195,784	2025.30	16.39 ic	8.93 ic	0.00		0.00	0.00	7.40				16.33
7.40	201,182	2025.40	17.23 ic	8.96 ic	0.00		0.00	0.00	8.27				17.23
7.50	206,581	2025.50	18.24 IC	8.99 ic	0.00		0.00	0.00	9.18				18.16
7.60	211,979	2025.60	19.25 IC	9.01 IC	0.00		0.00	0.00	10.11				19.12
7.70	217,377	2025.70	20.20 IC	9.04 IC	0.00		0.00	0.00	11.07				20.11
7.80	222,775	2025.80	21.13 IC	9.06 IC	0.00		0.00	0.00	12.06				21.13
7.90	228,174	2025.90	22.10 IC	9.08 IC	0.00		0.00	0.00	13.08				22.10
0.00	233,372	2026.00	23.23 IC	9.10 IC	0.00		0.00	0.00	14.13				23.23
0.10	239,320	2020.10	24.31 IC	9.11 IC	0.00		0.00	0.00	15.20				24.31
8.20	240,001	2020.20	20.42 IC	9.12 IC	0.00		0.00	0.00	17.30				20.42
8.40	256,500	2020.30	20.52 iC	9.10 ic	0.00		0.00	0.00	17.42				20.52
8 50	262 344	2020.40	28.82 ic	9.09 ic	0.00		0.00	0.00	10.57				27.00
8.60	268 099	2026.60	30.00 ic	9.06 ic	0.00		0.00	0.00	20.94				30.00
8 70	273 853	2026.00	31 19 ic	9.03 ic	0.00		0.00	0.00	22.16				31 19
8 80	279 608	2026 80	32 40 ic	9.00 ic	0.00		0.00	0.00	23 40				32 40
8 90	285 362	2026.90	33 63 ic	8 97 ic	0.00		0.00	0.00	24 67				33.63
9.00	291 117	2027 00	34,88 ic	8.93 ic	0.00		0.00	0.00	25 95				34 88
9.10	297.260	2027.10	36.14 ic	8.88 ic	0.00		0.00	0.00	27.26				36 14
9.20	303.404	2027.20	37.41 ic	8.82 ic	0.00		0.00	0.00	28.59				37 41
9.30	309.547	2027.30	38.70 ic	8.76 ic	0.00		0.00	0.00	29.94				38.70
9.40	315.691	2027.40	40.01 ic	8.69 ic	0.00		0.00	0.00	31.31				40.01
9.50	321,834	2027.50	41.32 ic	8.62 ic	0.00		0.00	0.00	32.71				41.32
9.60	327,978	2027.60	43.88 ic	8.37 ic	0.00		1.39	0.00	34.12				43.88

Pond A-Upgraded TOB Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
9.70	334,121	2027.70	47.43 ic	7.95 ic	0.00		3.93	0.00	35.55				47.43
9.80	340,265	2027.80	51.57 ic	7.36 ic	0.00		7.22	0.00	37.00 s				51.57
9.90	346,408	2027.90	55.18 ic	6.76 ic	0.00		11.11	0.00	37.31 s				55.18
10.00	352,552	2028.00	58.40 ic	6.15 ic	0.00		15.54	0.00	36.71 s				58.40
10.10	359,155	2028.10	61.33 ic	5.50 ic	0.00		20.43	0.00	35.40 s				61.33
10.20	365,759	2028.20	63.97 ic	4.82 ic	0.00		25.74	0.00	33.41 s				63.97
10.30	372,362	2028.30	66.30 ic	4.11 ic	0.00		31.45	0.00	30.74 s				66.30
10.40	378,965	2028.40	68.21 ic	3.42 ic	0.00		37.13 s	0.00	27.67 s				68.21
10.50	385,569	2028.50	69.31 IC	3.05 IC	0.00		40.18 s	0.00	26.07 s				69.30
10.60	392,172	2028.60	70.16 IC	2.// IC	0.00		42.51 S	0.00	24.88 S				70.16
10.70	390,770	2020.70	70.09 IC	2.34 IC	0.00		44.40 S	0.00	23.09 S				70.09
10.00	405,579	2028.00	72.14 ic	2.04 IC 2.18 ic	0.00		40.10 S	0.00	23.04 S				72.13
11 00	418 586	2020.00	72.14 ic	2.10 ic	0.00		49.03 s	0.00	22.23 S				72.13
11 10	425 900	2029 10	73.21 ic	1 90 ic	0.00		50 27 s	0.00	21.00 S				73.21
11.10	433 213	2029 20	73 71 ic	1 79 ic	0.00		51 41 s	0.00	20.51 s				73 70
11.30	440.526	2029.30	74.18 ic	1.68 ic	0.00		52.46 s	0.00	20.02 s				74.17
11.40	447,840	2029.40	74.63 ic	1.59 ic	0.00		53.45 s	0.00	19.58 s				74.62
11.50	455,153	2029.50	75.07 ic	1.51 ic	0.00		54.37 s	0.00	19.18 s				75.06
11.60	462,466	2029.60	75.50 ic	1.43 ic	0.00		55.25 s	0.00	18.82 s				75.50
11.70	469,780	2029.70	75.92 ic	1.36 ic	0.00		56.07 s	0.00	18.48 s				75.92
11.80	477,093	2029.80	76.33 ic	1.30 ic	0.00		56.85 s	0.00	18.17 s				76.32
11.90	484,407	2029.90	76.73 ic	1.24 ic	0.00		57.58 s	0.00	17.89 s				76.71
12.00	491,720	2030.00	77.13 ic	1.19 ic	0.00		58.30 s	0.00	17.62 s				77.11
12.10	500,161	2030.10	77.52 ic	1.14 ic	0.00		58.99 s	0.00	17.38 s				77.51
12.20	508,602	2030.20	77.90 ic	1.09 IC	0.00		59.63 s	0.00	17.15 s				//.88
12.30	517,043	2030.30	78.28 IC	1.05 IC	0.00		60.28 s	0.00	16.94 s				78.28
12.40	525,484	2030.40	78.66 IC	1.01 IC	0.00		60.89 S	0.00	16.75 s				78.65
12.50	533,920	2030.50	79.03 IC	0.98 IC	0.00		61.47 S	0.00	10.00 S				79.01
12.00	550 808	2030.00	79.40 lC	0.94 iC	0.00		62.04 S	0.00	16.39 S				79.37
12.70	559 249	2030.70	80 13 ic	0.91 ic	0.00		63 14 s	0.00	16.08 s				80.10
12.00	567 690	2030.90	80 49 ic	0.85 ic	0.00		63 66 s	0.00	15.00 S				80.45
13.00	576.131	2031.00	80.84 ic	0.82 ic	0.00		64.18 s	0.00	15.81 s				80.81
13.10	585.666	2031.10	81.20 ic	0.80 ic	0.00		64.67 s	0.00	15.68 s				81.15
13.20	595,201	2031.20	81.55 ic	0.78 ic	0.00		65.19 s	0.00	15.57 s				81.54
13.30	604,735	2031.30	81.90 ic	0.75 ic	0.00		65.63 s	0.00	15.45 s				81.83
13.40	614,270	2031.40	82.25 ic	0.73 ic	0.00		66.13 s	0.00	15.35 s				82.21
13.50	623,804	2031.50	82.59 ic	0.71 ic	0.00		66.56 s	0.00	15.25 s				82.53
13.60	633,339	2031.60	82.94 ic	0.69 ic	0.00		67.03 s	0.00	15.16 s				82.88
13.70	642,873	2031.70	83.28 ic	0.67 ic	0.00		67.45 s	0.00	15.07 s				83.19
13.80	652,408	2031.80	83.62 ic	0.66 ic	0.00		67.90 s	0.00	14.99 s				83.56
13.90	661,942	2031.90	83.96 IC	0.64 IC	0.00		68.36 s	0.00	14.92 s				83.93
14.00	6/1,4//	2032.00	84.29 IC	0.63 IC	0.00		60.10 S	0.00	14.85 S				84.23
14.10	602 177	2032.10	84.05 IC	0.01 IC	0.00		09.19 S	0.00	14.70 S				04.00 84.04
14.20	702 527	2032.20	85 29 ic	0.00 ic	0.00		69.02 S	0.00	14.72 S				85 10
14.00	712 877	2032.00	85.62 ic	0.50 ic	0.00		70 44 s	0.00	14.60 s				85.62
14 50	723 227	2032.50	85 95 ic	0.56 ic	0.00		70.72 s	0.00	14.50 s				85.80
14.60	733.577	2032.60	86.28 ic	0.55 ic	0.00		71.16 s	0.00	14.48 s				86.19
14.70	743,927	2032.70	86.61 ic	0.53 ic	0.00		71.53 s	0.00	14.43 s				86.49
14.80	754,277	2032.80	86.93 ic	0.52 ic	0.00		71.96 s	0.00	14.39 s				86.87
14.90	764,627	2032.90	87.25 ic	0.51 ic	0.00		72.31 s	0.00	14.35 s				87.17
15.00	774,977	2033.00	87.58 ic	0.50 ic	0.00		72.67 s	0.00	14.30 s				87.47
15.10	786,104	2033.10	87.87 oc	0.49 ic	0.00		73.04 s	0.00	14.26 s				87.79
15.20	797,232	2033.20	88.14 oc	0.48 ic	0.00		73.30 s	0.00	14.21 s				87.98
15.30	808,359	2033.30	88.40 oc	0.47 ic	0.00		73.70 s	0.00	14.18 s				88.36
15.40	819,487	2033.40	88.67 oc	0.46 ic	0.00		74.00 s	0.00	14.14 s				88.60
15.50	830,615	2033.50	88.93 oc	0.46 IC	0.00		74.28 s	0.00	14.09 s				88.83
15.00	841,742	2033.00	89.20 OC	0.45 IC	0.00		74.50 S	0.00	14.04 S				88.98
15.70	002,070	2033.70	09.40 0C	0.44 IC	0.00		74.00 S	0.00	14.00 S				09.24 80.50
15.00	875 125	2033.00	80.08.00	0.43 ic	0.00		75.10 S	0.00	13.97 5				80.00
16.00	886 252	2033.90	90.24 oc	0.42 ic	0.00		75.32 S	0.00	13.90 S				Q0 15
16 10	898 132	2034 10	90.50.00	0.41 ic	0.00		76 12 s	0.00	13.90 c				90.13
16.20	910.013	2034.20	90.75 oc	0.40 ic	0.00		76.44 s	0.00	13.88 s				90.73
16.30	921,893	2034.30	91.01 oc	0.40 ic	0.00		76.65 s	0.00	13.84 s				90.89
16.40	933,773	2034.40	91.27 oc	0.39 ic	0.00		76.81 s	0.00	13.79 s				90.99
16.50	945,653	2034.50	91.52 oc	0.38 ic	0.00		77.26 s	0.00	13.80 s				91.44
16.60	957,534	2034.60	91.78 oc	0.38 ic	0.00		77.60 s	0.00	13.79 s				91.76
16.70	969,414	2034.70	92.03 oc	0.37 ic	0.00		77.59 s	0.00	13.71 s				91.68
16.80	981,294	2034.80	92.29 oc	0.37 ic	0.00		77.91 s	0.00	13.70 s				91.98

Pond A-Upgraded TOB Pond Stage / Storage / Discharge Table

Stage	Storage	Elevation	Clv A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
16.90 17.00	993,174 1 005 055	2034.90 2035.00	92.54 oc 92.79 oc	0.36 ic 0.35 ic	0.00		78.45 s 78 42 s	0.00	13.73 s 13.66 s				92.54 92.43

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 49

UPGRADED POND A ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 7.598 cfs
Storm frequency	= 1 yrs	Time to peak	= 802 min
Time interval	= 2 min	Hyd. volume	= 235,176 cuft
Inflow hyd. No.	= 41 - POST TOTAL T	O POND Max. Elevation	= 2023.15 ft
Reservoir name	= Pond A-Upgraded Te	OB Pond Max. Storage	= 90,687 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 49

UPGRADED POND A ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 34.54 cfs
Storm frequency	= 10 yrs	Time to peak	= 754 min
Time interval	= 2 min	Hyd. volume	= 671,122 cuft
Inflow hyd. No.	= 41 - POST TOTAL TO POND	Max. Elevation	= 2026.97 ft
Reservoir name	= Pond A-Upgraded TOB Pond	Max. Storage	= 289,541 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 49

UPGRADED POND A ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 81.19 cfs
Storm frequency	= 100 yrs	Time to peak	= 764 min
Time interval	= 2 min	Hyd. volume	= 1,343,249 cuft
Inflow hyd. No.	= 41 - POST TOTAL TO POND	Max. Elevation	= 2031.11 ft
Reservoir name	= Pond A-Upgraded TOB Pond	Max. Storage	= 586,494 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

Total Offsite thru Southern Reach

Hydrograph type Storm frequency	= Combine = 1 vrs	Peak discharge Time to peak	= 46.84 cfs = 720 min
Time interval	= 2 min	Hyd. volume	= 144,746 cuft
Inflow hyds.	= 18, 20, 21	Contrib. drain. area	= 5.090 ac

164

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

Total Offsite thru Southern Reach

Hydrograph type Storm frequency	= Combine = 10 vrs	Peak discharge Time to peak	= 86.16 cfs = 720 min
Time interval	$= 2 \min$	Hyd. volume	= 341,950 cuft
Inflow hyds.	= 18, 20, 21	Contrib. drain. area	= 5.090 ac

Drainage Area Runoff and Time of Concentration

Drainage Area: **POST ONSITE TO POND B (S. DRY POND)** POSTDEVELOPMENT

	Cor			Notes:		
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN1	В	Open space	61	3.15	192.37	
CN ₂	C	Open space	74	3.27	242.32	
CN ₃	В	Imperv. (measured)	98	0.38	36.97	
CN ₄	С	Imperv. (measured)	98	1.62	158.58	Impervious lot area calculated
CN ₅	В	Imperv. (est. lots)	98	0.16	15.58	on "Typical Lot Impervious
CN ₆ C In		Imperv. (est. lots)	98	1.78	174.15	Area Estimate" table
CN ₇					0.00	elsewhere
CN ₈					0.00	
CN ₉					0.00	
CN ₁₀					0.00	
	Total 10.36]
			Со	mposite CN =	79	

Time of Concentration, T _c								
2 yr. Precip. (in.) = 2.73								
		Roughness Slope						
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)		
1	Other Tt	Estimate				5.0		
2								
3								
4								
5								
6								
7								
8								
9								
10								
		Tota	l Time of Co	ncentration, 1	Γ _c (min.) =	5.0		

Runoff							
	1 Yr.	10 Yr.	100 Yr.				
Precipitation (in.), P	2.26	4.06	6.44				
Composite CN	79	79	79				
Storage (in.) S=1000/CN-10	2.66	2.66	2.66				
Initial abstraction (in.), I _a =0.2S	0.53	0.53	0.53				
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.68	2.01	4.07				
Runoff volume (ac-ft), RV = Q/12*A	0.59	1.74	3.52				
Flow rate (cfs), q _{peak} from hydrograph	11.94	35.13	69.96				
Hydrograph Number:	43						

ydrograph Number:

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 43

POST ONSITE TO POND B

Hydrograph type	= SCS Runoff	Peak discharge	= 11.94 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 24,009 cuft
Drainage area	= 10.360 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 43

POST ONSITE TO POND B

Hydrograph type	= SCS Runoff	Peak discharge	= 35.13 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 70,946 cuft
Drainage area	= 10.360 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 43

POST ONSITE TO POND B

Hydrograph type	= SCS Runoff	Peak discharge	= 69.96 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 143,669 cuft
Drainage area	= 10.360 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.44 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 44

TOTAL TO SOUTH DET POND B

Hydrograph type Storm frequency	= Combine = 1 vrs	Peak discharge Time to peak	= 57.30 cfs = 718 min
Time interval	$= 2 \min$	Hyd. volume	= 168,755 cuft
Inflow hyds.	= 22, 43	Contrib. drain. area	= 10.360 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 44

TOTAL TO SOUTH DET POND B

= Combine = 10 vrs	Peak discharge Time to peak	= 118.81 cfs = 718 min
$= 2 \min$	Hyd. volume	= 412,897 cuft
= 22, 43	Contrib. drain. area	= 10.360 ac
	= Combine = 10 yrs = 2 min = 22, 43	= CombinePeak discharge= 10 yrsTime to peak= 2 minHyd. volume= 22, 43Contrib. drain. area

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 44

TOTAL TO SOUTH DET POND B

Hydrograph type Storm frequency	= Combine = 100 vrs	Peak discharge Time to peak	= 203.78 cfs = 718 min
Time interval	= 2 min	Hyd. volume	= 767,286 cuft
Inflow hyds.	= 22, 43	Contrib. drain. area	= 10.360 ac

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 2 - Pond B-South Detention Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 2021.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	2021.00	24	0	0
1.00	2022.00	2,752	1,011	1,011
2.00	2023.00	9,028	5,588	6,599
3.00	2024.00	16,214	12,446	19,044
4.00	2025.00	23,731	19,852	38,896
5.00	2026.00	31,571	27,555	66,451
6.00	2027.00	38,958	35,196	101,647
7.00	2028.00	44,308	41,600	143,247
8.00	2029.00	48,858	46,560	189,807
9.00	2030.00	52,814	50,818	240,625
10.00	2031.00	56,575	54,678	295,304
11.00	2032.00	60,436	58,489	353,793
12.00	2033.00	64,395	62,399	416,191
13.00	2034.00	68,452	66,407	482,598
14.00	2035.00	72,607	70,512	553,110
15.00	2036.00	76,860	74,716	627,826

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 54.00	30.00	Inactive	0.00	Crest Len (ft)	= 18.85	Inactive	0.00	0.00
Span (in)	= 54.00	30.00	24.00	0.00	Crest El. (ft)	= 2027.00	2028.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 2021.00	2021.01	2027.00	0.00	Weir Type	= 1	Broad		
Length (ft)	= 150.00	0.50	150.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.00	1.00	2.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by \	Net area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Storage / Discharge Table Elevation Clv A Stage Storage Clv B Clv C PrfRsr Wr A Wr B Wr C Wr D Exfil User Total cuft cfs ft ft cfs 0.00 0 0.000 2021.00 0.00 0.00 0.00 0.00 0.00 ---____ 0.10 101 2021.10 0.06 ic 0.05 ic 0.00 0.00 0.00 -------0.050 -----------0.20 0.20 ic 0.00 0.200 202 2021.20 0.20 ic 0.00 ---0.00 --------------0.00 0.30 303 2021.30 0.48 ic 0.47 ic ---0.00 0.00 --------------0.469 404 ----0.40 2021.40 0.81 ic 0.81 ic 0.00 0.00 0.00 ----0.810 ---------0.50 505 2021.50 1.26 ic 1.26 ic 0.00 ---0.00 0.00 --------------1.263 0.60 607 2021.60 1.85 ic 1.79 ic 0.00 0.00 --------1.785 0.00 -----------0.70 708 2021.70 0.00 0.00 0.00 ----2.433 2.43 ic 2.43 ic --------____ ----0.80 809 2021.80 0.00 ---0.00 0.00 -------3.112 3.11 ic 3.11 ic -------3.928 0.90 910 2021.90 3.93 ic 3.93 ic 0.00 0.00 0.00 -----------------1.00 1,011 2022.00 4.86 ic 4.73 ic 0.00 ---0.00 0.00 --------------4.734 5.630 1.10 1,570 2022 10 5.63 ic 5 63 ic 0.00 0.00 0.00 -----------------1.20 2,128 2022.20 6.75 ic 6.63 ic 0.00 ---0.00 0.00 ---------------6.635 1.30 2,687 2022.30 7.72 ic 0.00 0.00 0.00 -------7.719 7 72 ic -----------1.40 3,246 2022.40 9.08 ic 8.82 ic 0.00 ---0.00 0.00 -------------8.820 1.50 3,805 10.14 ic 10.02 ic 0.00 0.00 0.00 2022.50 10.02 ---------------------1.60 4,363 2022.60 11.27 ic 11.23 ic 0.00 ---0.00 0.00 ------------11.23 12.48 ic 12.44 ic 0.00 12.44 1.70 4,922 2022 70 0.00 ---0.00 ---____ ____ ---1.80 5,481 2022.80 13.76 ic 13.76 ic 0.00 ---0.00 0.00 ---------------13.76 1.90 6,040 2022.90 15.12 ic 15.05 ic 0.00 0.00 0.00 -----------15.05 ----------2.00 6,599 2023.00 16.55 ic 16.26 ic 0.00 ----0.00 0.00 ------------16.26 ----2.10 7,843 2023.10 17.47 ic 17.46 ic 0.00 ---0.00 0.00 ------------17.46 --------2.20 9,088 2023.20 18.90 ic 18.90 ic 0.00 ---0.00 0.00 --------18.90 0.00 ----2.30 10,332 2023.30 20.47 ic 20.04 ic 0.00 ----0.00 ----------20.04 0.00 0.00 21.35 2.40 11,577 2023.40 21.35 ic 21.35 ic 0.00 -------------------12,821 22.30 ic 22.30 ic 0.00 22.30 2.50 2023.50 0.00 0.00 -------------------2.60 14,066 2023.60 23.16 ic 23.16 ic 0.00 ---0.00 0.00 -------------23.16

Pond B-South Detention Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
2.70	15,310	2023.70	24.01 ic	24.01 ic	0.00		0.00	0.00					24.01
2.80	16,555	2023.80	24.86 ic	24.86 ic	0.00		0.00	0.00					24.86
2.90	17,800	2023.90	25.76 ic	25.62 ic	0.00		0.00	0.00					25.62
3.00	19,044	2024.00	26.70 ic	26.32 ic	0.00		0.00	0.00					26.32
3.10	21,029	2024.10	27.66 IC	27.01 IC	0.00		0.00	0.00					27.01
3.20	23,014	2024.20	27.82 IC	27.82 IC	0.00		0.00	0.00					27.82
3.30	25,000	2024.30	20.00 IC	20.00 IC 20.30 ic	0.00		0.00	0.00					20.00
3.50	28,900	2024.40	30.63 ic	29.00 ic	0.00		0.00	0.00					29.50
3.60	30.955	2024.60	30.73 ic	30.72 ic	0.00		0.00	0.00					30.72
3.70	32,940	2024.70	31.65 ic	31.41 ic	0.00		0.00	0.00					31.41
3.80	34,925	2024.80	32.69 ic	31.98 ic	0.00		0.00	0.00					31.98
3.90	36,911	2024.90	32.77 ic	32.76 ic	0.00		0.00	0.00					32.76
4.00	38,896	2025.00	33.73 ic	33.40 ic	0.00		0.00	0.00					33.40
4.10	41,651	2025.10	33.98 ic	33.98 ic	0.00		0.00	0.00					33.98
4.20	44,407	2025.20	34.80 IC	34.75 IC	0.00		0.00	0.00					34.75
4.30	47,162	2025.30	35.87 IC	35.26 IC	0.00		0.00	0.00					35.20
4.40	49,910	2025.40	35.90 IC	30.90 IC	0.00		0.00	0.00					30.90
4.50	55 429	2025.50	37 14 ic	37 14 ic	0.00		0.00	0.00					37 14
4.00	58 184	2025.00	38.06 ic	37.78 ic	0.00		0.00	0.00					37.14
4.80	60,940	2025.80	38.31 ic	38.31 ic	0.00		0.00	0.00					38.31
4.90	63,695	2025.90	39.17 ic	38.98 ic	0.00		0.00	0.00					38.98
5.00	66,451	2026.00	39.46 ic	39.46 ic	0.00		0.00	0.00					39.46
5.10	69,971	2026.10	40.29 ic	40.14 ic	0.00		0.00	0.00					40.14
5.20	73,490	2026.20	40.60 ic	40.60 ic	0.00		0.00	0.00					40.60
5.30	77,010	2026.30	41.42 ic	41.27 ic	0.00		0.00	0.00					41.27
5.40	80,529	2026.40	41.73 ic	41.72 ic	0.00		0.00	0.00					41.72
5.50	84,049	2026.50	42.57 ic	42.37 ic	0.00		0.00	0.00					42.37
5.60	87,569	2026.60	42.84 IC	42.84 IC	0.00		0.00	0.00					42.84
5.70	91,088	2026.70	43.72 IC	43.44 IC	0.00		0.00	0.00					43.44
5.00 5.00	94,000	2020.00	43.93 IC	43.93 IC	0.00		0.00	0.00					43.93
5.90	90,120 101 647	2020.90	44.00 IC 45.02 ic	44.49 IC 45.02 ic	0.00		0.00	0.00					44.49
6 10	105 807	2027.00	47 26 ic	45.02 ic	0.00		1.98	0.00					47.26
6.20	109.967	2027.20	50.84 ic	45.23 ic	0.00		5.61	0.00					50.84
6.30	114,127	2027.30	55.60 ic	45.02 ic	0.00		10.31	0.00					55.33
6.40	118,287	2027.40	60.58 ic	44.70 ic	0.00		15.87	0.00					60.58
6.50	122,447	2027.50	66.52 ic	44.33 ic	0.00		22.18	0.00					66.52
6.60	126,607	2027.60	73.59 ic	43.73 ic	0.00		29.16	0.00					72.89
6.70	130,767	2027.70	80.40 ic	43.16 ic	0.00		36.75	0.00					79.91
6.80	134,927	2027.80	87.80 IC	42.45 IC	0.00		44.90	0.00					87.35
6.90 7.00	139,087	2027.90	95.31 IC	41.67 IC	0.00		53.57	0.00					95.25
7.00	143,247	2028.00	103.07 IC	40.59 IC 30 25 ic	0.00		02.11	0.00					103.37
7.10	147,903	2028.10	110.87 ic	37.36 ic	0.00		82 51	0.00					110.87
7.30	157 215	2028.30	128 39 ic	35 36 ic	0.00		93.03	0.00					128.39
7.40	161.871	2028.40	136.97 ic	33.00 ic	0.00		103.97	0.00					136.97
7.50	166,527	2028.50	145.54 ic	30.24 ic	0.00		115.30	0.00					145.54
7.60	171,183	2028.60	152.43 ic	27.83 ic	0.00		124.60 s	0.00					152.43
7.70	175,839	2028.70	157.25 ic	26.23 ic	0.00		131.01 s	0.00					157.25
7.80	180,495	2028.80	161.37 ic	24.88 ic	0.00		136.49 s	0.00					161.37
7.90	185,151	2028.90	165.04 ic	23.68 ic	0.00		141.37 s	0.00					165.04
8.00	189,807	2029.00	168.39 ic	22.59 ic	0.00		145.80 s	0.00					168.39
8.10	194,889	2029.10	1/1.4/ IC	21.60 IC	0.00		149.87 s	0.00					1/1.46
8.20	199,971	2029.20	174.33 IC	20.69 IC	0.00		153.64 S	0.00					174.33
0.3U 8.40	205,055	2029.30	177.02 IC	19.00 IC	0.00		157.17 5	0.00					170.55
8.50	215,135	2029.40	181 95 ic	18.35 ic	0.00		163.60 s	0.00					181 95
8.60	220,298	2029.60	184.25 ic	17.68 ic	0.00		166.56 s	0.00					184.24
8.70	225.380	2029.70	186.44 ic	17.06 ic	0.00		169.38 s	0.00					186.44
8.80	230,462	2029.80	188.55 ic	16.47 ic	0.00		172.07 s	0.00					188.54
8.90	235,544	2029.90	190.59 ic	15.92 ic	0.00		174.66 s	0.00					190.59
9.00	240,625	2030.00	192.57 ic	15.41 ic	0.00		177.15 s	0.00					192.56
9.10	246,093	2030.10	194.48 ic	14.93 ic	0.00		179.55 s	0.00					194.47
9.20	251,561	2030.20	196.34 ic	14.47 ic	0.00		181.85 s	0.00					196.32
9.30	257,029	2030.30	198.15 ic	14.05 ic	0.00		184.10 s	0.00					198.14
9.40	262,497	2030.40	199.92 ic	13.64 ic	0.00		186.25 s	0.00					199.89
9.50	267,964	2030.50	201.64 ic	13.26 ic	0.00		188.37 s	0.00					201.63
9.0U 0.70	213,432	2030.00	203.34 IC	12.90 IC	0.00		190.42 S	0.00					203.31
9.70 9.80	284 262	2030.70	205.00 10	12.00 IC	0.00		192.42 S	0.00					204.97
5.00	204,000	2000.00	200.02 10	12.2010	0.00		134.30 5	0.00					200.01

Pond B-South Detention Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
9.90	289,836	2030.90	208.23 ic	11.92 ic	0.00		196.29 s	0.00					208.21
10.00	295,304	2031.00	209.81 ic	11.62 ic	0.00		198.16 s	0.00					209.79
10.10	301,152	2031.10	211.36 ic	11.35 ic	0.00		200.00 s	0.00					211.34
10.20	307,001	2031.20	212.89 ic	11.08 ic	0.00		201.80 s	0.00					212.88
10.30	312,850	2031.30	214.40 ic	10.82 ic	0.00		203.55 s	0.00					214.37
10.40	318,699	2031.40	215.89 ic	10.58 ic	0.00		205.27 s	0.00					215.85
10.50	324,548	2031.50	217.36 IC	10.35 IC	0.00		207.00 s	0.00					217.35
10.60	330,397	2031.60	218.81 IC	10.13 IC	0.00		208.67 s	0.00					218.80
10.70	336,246	2031.70	220.25 IC	9.91 IC	0.00		210.31 s	0.00					220.23
10.80	342,095	2031.80	221.67 IC	9.71 ic	0.00		211.94 s	0.00					221.65
10.90	347,944	2031.90	223.07 IC	9.51 IC	0.00		213.52 s	0.00					223.03
11.00	353,793	2032.00	224.47 IC	9.33 IC	0.00		215.12 s	0.00					224.44
11.10	360,032	2032.10	225.85 IC	9.15 IC	0.00		216.66 s	0.00					225.81
11.20	366,272	2032.20	227.22 IC	8.97 IC	0.00		218.23 S	0.00					227.20
11.30	372,512	2032.30	228.57 IC	8.81 IC	0.00		219.75 s	0.00					228.56
11.40	378,752	2032.40	229.91 ic	8.65 IC	0.00		221.26 s	0.00					229.91
11.50	384,992	2032.50	231.24 IC	8.49 IC	0.00		222.70 s	0.00					231.19
11.60	391,232	2032.60	232.56 IC	8.34 IC	0.00		224.22 s	0.00					232.56
11.70	397,472	2032.70	233.88 IC	8.20 IC	0.00		225.62 s	0.00					233.82
11.80	403,712	2032.80	235.18 IC	8.06 IC	0.00		227.06 s	0.00					235.12
11.90	409,951	2032.90	236.47 IC	7.93 IC	0.00		228.49 s	0.00					236.41
12.00	416,191	2033.00	237.7510	7.79 IC	0.00		229.87 s	0.00					237.67
12.10	422,832	2033.10	239.02 ic	7.67 IC	0.00		231.28 s	0.00					238.95
12.20	429,473	2033.20	240.28 IC	7.55 IC	0.00		232.72 S	0.00					240.27
12.30	436,113	2033.30	241.54 IC	7.43 IC	0.00		234.09 s	0.00					241.52
12.40	442,734	2033.40	242.7910	7.32 IC	0.00		235.39 5	0.00					242.71
12.50	449,395	2033.50	244.02 IC	7.21 IC	0.00		230.74 S	0.00					243.95
12.00	400,000	2033.00	245.2010	7.1010	0.00		230.03 \$	0.00					240.10
12.70	402,070	2033.70	240.40 IC	7.00 IC	0.00		239.43 5	0.00					240.43
12.00	409,317	2033.00	247.09 IC	6.90 ic	0.00		240.795	0.00					247.09
12.90	475,957	2033.90	240.90 IC	6.71 ic	0.00		242.02 S	0.00					240.02
12.00	402,590	2034.00	250.111C	6.62 io	0.00		243.295	0.00					250.00
13.10	409,049	2034.10	251.30 IC	0.02 IC	0.00		244.01 5	0.00					251.23
13.20	490,700	2034.20	252.49 IC	6.44 io	0.00		245.94 5	0.00					252.47
13.30	510 803	2034.30	253.07 iC	6 35 ic	0.00		247.105	0.00					253.00
13.40	517 854	2034.40	254.05 IC	6.28 ic	0.00		240.30 S	0.00					256.01
13.60	524 005	2034.50	250.01 ic	6.10 ic	0.00		249.73 S	0.00					257.06
13.00	524,905	2034.00	258 33 ic	6.12 ic	0.00		250.07 S	0.00					258.30
13.80	530 008	2034.70	250.00 ic	6.04 ic	0.00		252.10 S	0.00					250.50
13.00	546 059	2034.00	260 63 ic	5.97 ic	0.00		254 63 s	0.00					260 50
14.00	553 110	2035.00	261 77 ic	5.00 ic	0.00		255.87 s	0.00					261 77
14.00	560 582	2035.00	262 90 ic	5.80 ic	0.00		255.07 S	0.00					262.76
14.10	568 053	2035.20	264 03 ic	5.02 ic	0.00		258 10 s	0.00					263.05
14.30	575 525	2035.20	265 15 ic	5.69 ic	0.00		259.39 s	0.00					265.00
14.00	582 997	2035.40	266 27 ic	5.62 ic	0.00		260.00 S	0.00					266.00
14.50	590 468	2035 50	267.38 ic	5.57 ic	0.00		261.81 s	0.00					267.37
14 60	597 940	2035.60	268 49 ic	5.50 ic	0.00		262.88 e	0.00					268.38
14 70	605 412	2035 70	269 59 ic	5.00 lo	0.00		264 10 c	0.00					269 54
14 80	612 883	2035 80	270 69 ic	5 38 ic	0.00		265 19 9	0.00					270.57
14 90	620 355	2035.90	271 78 ic	5.32 ic	0.00		266 40 9	0.00					271 72
15.00	627,826	2036.00	272.87 ic	5.27 ic	0.00		267.41 s	0.00					272.68

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 45

S DET POND B ROUTE

Hydrograph type	= Reservoir	Peak discharge	= 29.27 cfs
Storm frequency	= 1 yrs	l ime to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 168,708 cuft
Inflow hyd. No.	= 44 - TOTAL TO SO	OUTH DET RADE DEBevation	= 2024.40 ft
Reservoir name	= Pond B-South Det	ention Pond Max. Storage	= 26,899 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 45

S DET POND B ROUTE

Hydrograph type	= Reservoir	Peak discharge	= 44.22 cfs
Time interval	$= 2 \min$	Hyd. volume	= 412,843 cuft
Inflow hyd. No. Reservoir name	= 44 - TOTAL TO SOUTH DET= Pond B-South Detention Pon	R Max D⊞evation d Max. Storage	= 2026.85 ft = 96,437 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 45

S DET POND B ROUTE

Hydrograph type	= Reservoir	Peak discharge	= 104.21 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 767,232 cuft
Inflow hyd. No.	= 44 - TOTAL TO SOUTH DET	RONDEBevation	= 2028.01 ft
Reservoir name	= Pond B-South Detention Pond	Max. Storage	= 143,723 cuft

Drainage Area Runoff and Time of Concentration

Drainage Area: POSTDEV TO POND C (WETPOND) POSTDEVELOPMENT

	Cor		Notes:			
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN_1	В	Open space	61	2.37	144.70	
CN ₂	С	Open space	74	4.65	344.43	1) Impervious lot area
CN ₃	В	Imperv. (measured)	98	0.24	23.38	calculated on "Typical Lot
CN ₄	С	Imperv. (measured)	98	0.85	83.25	Impervious Area Estimate"
CN ₅	В	Imperv. (est. lots)	98	0.25	24.89	table elsewhere
CN ₆	С	Imperv. (est. lots)	98	2.19	214.52	2) Wet pond normal pool
CN ₇	В	Imperv. (water surf.)	98	0.89	87.00	water surface area is counted
CN ₈					0.00	as impervious area for
CN ₉					0.00	hydrology
CN ₁₀					0.00	
	*		Total	11.45	922.18	
			Со	mposite CN =	81	

Time of Concentration, T _c									
2 yr. Precip. (in.) = 2.73									
				Roughness	Slope	Travel Time, T _t			
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)			
1	Other Tt	Estimate				5.0			
2									
3									
4									
5									
6									
7									
8									
9									
10									
		Tota	l Time of Co	ncentration, 1	Γ _c (min.) =	5.0			

Runoff									
	1 Yr.	10 Yr.	100 Yr.						
Precipitation (in.), P	2.26	4.06	6.44						
Composite CN	81	81	81						
Storage (in.) S=1000/CN-10	2.35	2.35	2.35						
Initial abstraction (in.), I _a =0.2S	0.47	0.47	0.47						
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.78	2.17	4.29						
Runoff volume (ac-ft), RV = Q/12*A	0.74	2.07	4.09						
Flow rate (cfs), q _{peak} from hydrograph	15.10	41.81	80.72						
Hydrograph Number:	42								

уu rograp umber

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 42

POST DEV TO POND C ONLY

Hydrograph type	= SCS Runoff	Peak discharge	= 15.10 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 30,211 cuft
Drainage area	= 11.450 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 42

POST DEV TO POND C ONLY

Hydrograph type	= SCS Runoff	Peak discharge	= 41.81 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 84,635 cuft
Drainage area	= 11.450 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 42

POST DEV TO POND C ONLY

Hydrograph type	= SCS Runoff	Peak discharge	= 80.72 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 167,038 cuft
Drainage area	= 11.450 ac	Curve number	= 81
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.44 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 46

TOTAL TO WET POND C

Hydrograph type	= Combine	Peak discharge	= 40.16 cfs
Storm frequency	= 1 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 198,919 cuft
Inflow hyds.	= 42, 45	Contrib. drain. area	= 11.450 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 46

TOTAL TO WET POND C

Hydrograph type	= Combine	Peak discharge	= 77.76 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 497,478 cuft
Inflow hyds.	= 42, 45	Contrib. drain. area	= 11.450 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 46

TOTAL TO WET POND C

Hydrograph type	= Combine	Peak discharge	= 127.53 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 934,271 cuft
Inflow hyds.	= 42, 45	Contrib. drain. area	= 11.450 ac

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 5 - Pond C-Wet pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 2009.00 ft

Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	2009.00	18,345	0	0
1.00	2010.00	20,327	19,326	19,326
2.00	2011.00	22,469	21,387	40,713
3.00	2012.00	24,665	23,556	64,269
4.00	2013.00	26,917	25,780	90,049
5.00	2014.00	29,221	28,058	118,107
6.00	2015.00	34,309	31,728	149,835
7.00	2016.00	49,569	41,702	191,537
8.00	2017.00	52,449	50,997	242,534
9.00	2018.00	55,399	53,912	296,446
10.00	2019.00	58,415	56,895	353,340
11.00	2020.00	61,487	59,938	413,279

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	8.00	0.00	0.00	Crest Len (ft)	= 12.57	20.00	0.00	0.00
Span (in)	= 24.00	8.00	0.00	0.00	Crest El. (ft)	= 2016.50	2017.50	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 2009.00	2015.30	0.00	0.00	Weir Type	= 1	Broad		
Length (ft)	= 65.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.00	1.00	0.00	n/a	-				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	2009.00	0.00	0.00			0.00	0.00					0.000
0.10	1,933	2009.10	0.00	0.00			0.00	0.00					0.000
0.20	3,865	2009.20	0.00	0.00			0.00	0.00					0.000
0.30	5,798	2009.30	0.00	0.00			0.00	0.00					0.000
0.40	7,730	2009.40	0.00	0.00			0.00	0.00					0.000
0.50	9,663	2009.50	0.00	0.00			0.00	0.00					0.000
0.60	11,595	2009.60	0.00	0.00			0.00	0.00					0.000
0.70	13,528	2009.70	0.00	0.00			0.00	0.00					0.000
0.80	15,460	2009.80	0.00	0.00			0.00	0.00					0.000
0.90	17,393	2009.90	0.00	0.00			0.00	0.00					0.000
1.00	19,326	2010.00	0.00	0.00			0.00	0.00					0.000
1.10	21,464	2010.10	0.00	0.00			0.00	0.00					0.000
1.20	23,603	2010.20	0.00	0.00			0.00	0.00					0.000
1.30	25,742	2010.30	0.00	0.00			0.00	0.00					0.000
1.40	27,880	2010.40	0.00	0.00			0.00	0.00					0.000
1.50	30,019	2010.50	0.00	0.00			0.00	0.00					0.000
1.60	32,158	2010.60	0.00	0.00			0.00	0.00					0.000
1.70	34,296	2010.70	0.00	0.00			0.00	0.00					0.000
1.80	36,435	2010.80	0.00	0.00			0.00	0.00					0.000
1.90	38,574	2010.90	0.00	0.00			0.00	0.00					0.000
2.00	40,713	2011.00	0.00	0.00			0.00	0.00					0.000
2.10	43,068	2011.10	0.00	0.00			0.00	0.00					0.000
2.20	45,424	2011.20	0.00	0.00			0.00	0.00					0.000
2.30	47,779	2011.30	0.00	0.00			0.00	0.00					0.000
2.40	50,135	2011.40	0.00	0.00			0.00	0.00					0.000
2.50	52,491	2011.50	0.00	0.00			0.00	0.00					0.000
2.60	54,846	2011.60	0.00	0.00			0.00	0.00					0.000
2.70	57,202	2011.70	0.00	0.00			0.00	0.00					0.000
2.80	59,557	2011.80	0.00	0.00			0.00	0.00					0.000
2.90	61,913	2011.90	0.00	0.00			0.00	0.00					0.000
3.00	64.269	2012.00	0.00	0.00			0.00	0.00					0.000
	- ,												

Pond C-Wet pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.10	66,847	2012.10	0.00	0.00			0.00	0.00					0.000
3.20	69,425	2012.20	0.00	0.00			0.00	0.00					0.000
3.30	72,003	2012.30	0.00	0.00			0.00	0.00					0.000
3.40	74,581	2012.40	0.00	0.00			0.00	0.00					0.000
3.50	77,159	2012.50	0.00	0.00			0.00	0.00					0.000
3.60	79,737	2012.60	0.00	0.00			0.00	0.00					0.000
3.70	82.315	2012.70	0.00	0.00			0.00	0.00					0.000
3.80	84,893	2012.80	0.00	0.00			0.00	0.00					0.000
3 90	87 471	2012 90	0.00	0.00			0.00	0.00					0.000
4 00	90,049	2013.00	0.00	0.00			0.00	0.00					0.000
4 10	92,855	2013 10	0.00	0.00			0.00	0.00					0.000
4 20	95,661	2013 20	0.00	0.00			0.00	0.00					0.000
4.30	98 466	2013 30	0.00	0.00			0.00	0.00					0.000
4.00	101 272	2013.40	0.00	0.00			0.00	0.00					0.000
4.50	104 078	2013 50	0.00	0.00			0.00	0.00					0.000
4.60	106,884	2013.60	0.00	0.00			0.00	0.00					0.000
4.00	100,004	2013.00	0.00	0.00			0.00	0.00					0.000
4.70	109,090	2013.70	0.00	0.00			0.00	0.00					0.000
4.00	112,490	2013.00	0.00	0.00			0.00	0.00					0.000
4.90	110,001	2013.90	0.00	0.00			0.00	0.00					0.000
5.00	110,107	2014.00	0.00	0.00			0.00	0.00					0.000
5.10	121,280	2014.10	0.00	0.00			0.00	0.00					0.000
5.20	124,453	2014.20	0.00	0.00			0.00	0.00					0.000
5.30	127,626	2014.30	0.00	0.00			0.00	0.00					0.000
5.40	130,798	2014.40	0.00	0.00			0.00	0.00					0.000
5.50	133,971	2014.50	0.00	0.00			0.00	0.00					0.000
5.60	137,144	2014.60	0.00	0.00			0.00	0.00					0.000
5.70	140,317	2014.70	0.00	0.00			0.00	0.00					0.000
5.80	143,489	2014.80	0.00	0.00			0.00	0.00					0.000
5.90	146,662	2014.90	0.00	0.00			0.00	0.00					0.000
6.00	149,835	2015.00	0.00	0.00			0.00	0.00					0.000
6.10	154,005	2015.10	0.00	0.00			0.00	0.00					0.000
6.20	158,175	2015.20	0.00	0.00			0.00	0.00					0.000
6.30	162.346	2015.30	0.00	0.00			0.00	0.00					0.000
6.40	166.516	2015.40	0.04 ic	0.04 ic			0.00	0.00					0.036
6.50	170,686	2015 50	0.13 ic	0.13 ic			0.00	0.00					0 135
6.60	174 856	2015.60	0.29 ic	0.29 ic			0.00	0.00					0.286
6 70	179 026	2015 70	0.48 ic	0.47 ic			0.00	0.00					0.200
6.80	183 196	2015.80	0.40 ic	0.47 ic			0.00	0.00					0.680
6.00	187 366	2015.00	0.03 ic	0.00 iC			0.00	0.00					0.000
7.00	101,500	2015.30	1.02 io	1.02 io			0.00	0.00					1 010
7.00	191,007	2010.00	1.02 10	1.02 IC			0.00	0.00					1 1 1 1 0
7.10	190,030	2010.10	1.2010	1.1510			0.00	0.00					1.140
7.20	201,736	2016.20	1.27 IC	1.20 IC			0.00	0.00					1.205
7.30	206,836	2016.30	1.41 IC	1.37 IC			0.00	0.00					1.3/2
7.40	211,935	2016.40	1.48 IC	1.47 IC			0.00	0.00					1.4/1
7.50	217,035	2016.50	1.56 IC	1.56 IC			0.00	0.00					1.564
7.60	222,135	2016.60	3.03 ic	1.65 ic			1.32	0.00					2.973
7.70	227,235	2016.70	5.47 ic	1.74 ic			3.74	0.00					5.475
7.80	232,334	2016.80	8.76 ic	1.81 ic			6.87	0.00					8.686
7.90	237,434	2016.90	12.47 ic	1.89 ic			10.58	0.00					12.47
8.00	242,534	2017.00	16.76 ic	1.96 ic			14.80	0.00					16.76
8.10	247,925	2017.10	21.49 ic	2.04 ic			19.45	0.00					21.49
8.20	253,316	2017.20	26.62 ic	2.10 ic			24.51	0.00					26.62
8.30	258,707	2017.30	32.12 ic	2.17 ic			29.95	0.00					32.12
8.40	264.098	2017.40	37.59 ic	1.86 ic			35.73	0.00					37.59
8.50	269,490	2017.50	39.59 ic	1.35 ic			38.24 s	0.00					39.59
8 60	274 881	2017 60	40.35 ic	1 17 ic			39 17 s	1 64					41.98
8 70	280 272	2017.00	40.92 ic	1.03 ic			39.89 s	4 65					45 57
8 80	285 663	2017.70	40.02 ic	0.93 ic			40.48 s	8 54					40.07
8 90	200,000	2017.00	41.91 ic	0.00 ic			40.40 S	13 1/					5/ 08
0.00	206 446	2017.00	42.22 ic	0.04 ic			40.00 S	18 38					60.60
0.10	200,440	2010.00	42.22 ic	0.77 ic			41.453	24 17					66 73
0.00	302,133	2010.10	42.00 10	0.7010			41.005	24.17					72 26
9.20 0.20	001,020 212 E11	2010.20	42.91 10	0.0010			42.20 5	00.40 27 00					10.00
9.30	313,514	2018.30	43.23 IC				42.03 S	37.20					80.43
9.40	319,203	2018.40	43.54 IC	U.50 IC			42.9/ S	44.39					87.92
9.50	324,893	2018.50	43.84 IC	0.53 IC			43.30 s	51.99					95.82
9.60	330,582	2018.60	44.13 IC	0.50 IC			43.62 s	59.98					104.10
9.70	336,272	2018.70	44.41 ic	0.47 ic			43.93 s	68.34					112.74
9.80	341,961	2018.80	44.69 ic	0.44 ic			44.24 s	77.06					121.74
9.90	347,651	2018.90	44.96 ic	0.42 ic			44.53 s	86.12					131.07
10.00	353,340	2019.00	45.23 ic	0.40 ic			44.81 s	95.53					140.74
10.10	359,334	2019.10	45.50 ic	0.38 ic			45.11 s	105.24					150.73
10.20	365,328	2019.20	45.76 ic	0.36 ic			45.38 s	115.25					161.00

Pond C-Wet pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
10.30	371,322	2019.30	46.02 ic	0.35 ic			45.65 s	125.57					171.57
10.40	377,316	2019.40	46.28 ic	0.33 ic			45.91 s	136.18					182.42
10.50	383,309	2019.50	46.53 ic	0.32 ic			46.16 s	147.06					193.54
10.60	389,303	2019.60	46.78 ic	0.31 ic			46.43 s	158.23					204.97
10.70	395,297	2019.70	47.03 ic	0.29 ic			46.70 s	169.66					216.66
10.80	401.291	2019.80	47.28 ic	0.28 ic			46.94 s	181.36					228.58
10.90	407,285	2019.90	47.53 ic	0.27 ic			47.20 s	193.31					240.78
11.00	413,279	2020.00	47.77 ic	0.26 ic			47.44 s	205.55					253.25

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 47

WET POND C ROUTED

Hydrograph type	Reservoir1 yrs2 min	Peak discharge	= 15.71 cfs
Storm frequency		Time to peak	= 758 min
Time interval		Hyd. volume	= 195,247 cuft
Inflow hyd. No.	= 46 - TOTAL TO WET POND (= Pond C-Wet pond	CMax. Elevation	= 2016.98 ft
Reservoir name		Max. Storage	= 241,279 cuft

Storage Indication method used. Wet pond routing start elevation = 2015.30 ft.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 47

WET POND C ROUTED

Time interval= 2 minHyd. volume= 493,59Inflow hyd. No.= 46 - TOTAL TO WET POND CMax. Elevation= 2017.6Reservoir name= Pond C-Wet pondMax. Storage= 276.89	92 cuft 54 ft 98 cuft
---	-----------------------------

Storage Indication method used. Wet pond routing start elevation = 2015.30 ft.

191

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 47

WET POND C ROUTED

Hydrograph type	= Reservoir	Peak discharge	= 103.27 cfs
Storm frequency	= 100 yrs	Time to peak	= 742 min
Time interval	= 2 min	Hyd. volume	= 930,375 cuft
Inflow hyd. No.	= 46 - TOTAL TO WET P	OND CMax. Elevation	= 2018.59 ft
Reservoir name	= Pond C-Wet pond	Max. Storage	= 330,017 cuft

Storage Indication method used. Wet pond routing start elevation = 2015.30 ft.

Drainage Area Runoff and Time of Concentration

Drainage Area: POST UNDETAINED CONTRIB. AREA POSTDEVELOPMENT

-	Cor	Notes:				
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN_1	В	Open space	61	11.51	702.02	
CN ₂	С	Open space	74	0.97	71.62	
CN ₃	В	Imperv. (measured)	98	2.06	201.88	
CN ₄	С	Imperv. (measured)	98	0.05	4.74	
CN ₅	В	Imperv. (est. lots)	98	2.86	279.79	
CN ₆	С	Imperv. (est. lots)	98	0.00	0.00	
CN ₇	В	Woods (good)	55	2.34	128.48	
CN ₈	С	Woods (good)	70	4.89	342.25	
CN ₉					0.00	
CN ₁₀					0.00	
		1730.79				
		70				

Time of Concentration, T _c										
2 yr. Precip. (in.) = 2.73										
				Roughness	Slope	Travel Time, T _t				
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)				
1	Other Tt	Estimate				10.0				
2										
3										
4										
5										
6										
7										
8										
9										
10										
Total Time of Concentration, T _c (min.) =										

Runoff									
	1 Yr.	10 Yr.	100 Yr.						
Precipitation (in.), P	2.26	4.06	6.44						
Composite CN	70	70	70						
Storage (in.) S=1000/CN-10	4.29	4.29	4.29						
Initial abstraction (in.), I _a =0.2S	0.86	0.86	0.86						
Runoff depth (in.), $Q=(P-0.2S)^2/[(P-I_a)+S]$	0.35	1.37	3.16						
Runoff volume (ac-ft), RV = Q/12*A	0.71	2.82	6.49						
Flow rate (cfs), q _{peak} from hydrograph	9.25	47.55	112.35						
Hydrograph Number:	48								

192

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 48

POST UNDETAINED CONTRIB. AREA

Hydrograph type	= SCS Runoff	Peak discharge	= 9.246 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 31,948 cuft
Drainage area	= 24.670 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 48

POST UNDETAINED CONTRIB. AREA

Hydrograph type	= SCS Runoff	Peak discharge	= 47.55 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 126,507 cuft
Drainage area	= 24.670 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 50

POST TOTAL ROUTED TO PROP LINE

Hydrograph type Storm frequency	= Combine = 1 vrs	Peak discharge Time to peak	= 24.83 cfs = 756 min
Time interval	= 2 min	Hyd. volume	= 468,017 cuft
Inflow hyds.	= 25, 47, 48, 49	Contrib. drain. area	= 24.670 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 50

POST TOTAL ROUTED TO PROP LINE

Hydrograph type Storm frequency	= Combine = 10 vrs	Peak discharge Time to peak	= 90.38 cfs = 722 min
Time interval	$= 2 \min$	Hyd. volume	= 1,333,597 cuft = 24,670 ac
innow nyas.	- 20, 47, 40, 43	Contrib. drain. area	- 2 4 .070 ac

Stormwater Quantity Compliance (9VAC25-870-66)

Drainage Area:	Total at Pt Analysis: Downstre: Line	am Prop.
	Predev.	Postdev.
Area (ac.)	172.91	172.91
T _c (min.)		

Precipita	tion Data
Return	
Frequency	P (in.)
1 Yr.	2.26
10 Yr.	4.06

	1 Yr.		10 Yr.	
	Predev.	Postdev.	Predev.	Postdev.
Runoff volume from hydrograph (cu ft.)	422,747	468,017	1,234,986	1,333,597
Flow rate (cfs), q _{peak} from hydrograph	75.45	24.83	175.77	90.38

1 Year Channel Protection (9VAC25-870-66.B)						
q_allowable <= I.F.* (q_pre * RV_pre)/RV_	post)	Addressed by alternative method (if				
Improvement Factor (I.F.)	0.8	needed):				
q_pre (cfs)	75.45					
RV_pre (cu ft.) from hydrograph	422,747					
RV_post (ac-ft) from hydroraph	453,253					
q_allowable (cfs)	56.30					
q_post (cfs)	24.83					
Check (q_post <= q_allowable)	ОК					

10 Year Flood Protection (9VAC25-70-66.C)					
q_post <= q_pre Addressed by alternative method (if needed):					
q_pre (cfs)	175.77				
q_post (cfs)	90.38				
Check (q_post <= q_pre)	OK				

Other notes: Actual post-development flow rates to be determined in design. See hydrograph 32 for predevelopment runoff volume at the property line. See hydrograph 50 for the post-development runoff volume at the property line.

Drainage Area Runoff and Time of Concentration

Drainage Area:	Onsite Only Tota	al				
	PREDEVELOPME	NT				
	Con	nposite Curve Numbe	r (CN)			Notes:
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	Informational sheet (1 of 7):
CN_1	В	Open space	61	29.94	1826.34	This sheet is used to
CN ₂	C	Open space	74	17.33	1282.42	reduction in the 1-year
CN ₃	C	Impervious	98	0.04	3.92	event if the "energy
CN ₄					0.00	balance" equation were
CN ₅					0.00	site (i.e. offsite flows were
CN ₆					0.00	treated as pass-through
CN ₇					0.00	and added to the allowable rate calculated here). The
CN ₈					0.00	predev. flow rate assumes
CN ₉					0.00	no detention onsite and
CN ₁₀					0.00	does not include offsite flows.
			Total	47.31	3112.68	
			Со	mposite CN =	66	

Time of Concentration, T _c						
2 yr. Precip. (in.) = 2.73						
Flow Segment	Flow Regime	Land Cover	Length (ft)	Roughness Coeff., n	Slope (ft/ft)	Travel Time, T _t (min.)
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						18.2
		Tota	l Time of Co	ncentration, 1	「 _c (min.) =	18.2

Runoff							
	1 Yr.	10 Yr.	100 Yr.				
Precipitation (in.), P	2.26	4.06	6.44				
Composite CN	66	66	66				
Storage (in.) S=1000/CN-10	5.15	5.15	5.15				
Initial abstraction (in.), I _a =0.2S	1.03	1.03	1.03				
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.24	1.12	2.77				
Runoff volume (ac-ft), RV = Q/12*A	0.93	4.42	10.92				
Flow rate (cfs), q _{peak} from hydrograph	6.80	56.63					
Hydrograph Number:	53						

iye rograp

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 53

Onsite Only Total Predev

Hydrograph type =	= SCS Runoff	Peak discharge	= 6.804 cfs
Storm frequency =	= 1 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 40,666 cuft
Drainage area	= 47.310 ac	Curve number	= 66
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 18.20 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

Informational sheet (2 of 7):

This sheet is used to demonstrate the required reduction in the 1-year event if the "energy balance" equation were applied ONLY to the project site (i.e. offsite flows were treated as pass-through and added to the allowable rate calculated here). The predev. flow rate assumes no detention onsite and does not include offsite flows.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 53

Onsite Only Total Predev

= SCS Runoff	Peak discharge	= 56.63 cfs
= 10 yrs	Time to peak	= 726 min
= 2 min	Hyd. volume	= 192,681 cuft
= 47.310 ac	Curve number	= 66
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 18.20 min
= 4.06 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	 SCS Runoff 10 yrs 2 min 47.310 ac 0.0 % User 4.06 in 24 hrs 	= SCS RunoffPeak discharge= 10 yrsTime to peak= 2 minHyd. volume= 47.310 acCurve number= 0.0 %Hydraulic length= UserTime of conc. (Tc)= 4.06 inDistribution= 24 hrsShape factor

Informational sheet (3 of 7):

This sheet is used to determine the 10-year target for ONLY project site runoff (i.e. offsite flows were treated as pass-through and would be added to the allowable rate calculated here). The predev. flow rate assumes no detention onsite and does not include offsite flows.

Hyd No. 53

Time (min)

Drainage Area Runoff and Time of Concentration

Drainage Area: Onsite Only Total

	POSTDEVELOPN	IENT					
	Composite Curve Number (CN)						
	Hydrologic Soil Group	Land Cover	CN	Area, A (ac.)	CN*A	Informational sheet (4 of 7):	
CN ₁	В	Open space	61	22.61	1379.21	demonstrate the required	
CN ₂	В	Impervious	98	7.33	718.34	reduction in the 1-year	
CN ₃	С	Open space	74	10.75	795.50	event if the "energy balance" equation were	
CN ₄	C	Impervious	98	6.62	648.76	applied ONLY to the project	
CN ₅					0.00	site (i.e. offsite flows were	
CN ₆					0.00	and added to the allowable	
CN ₇					0.00	rate calculated here). The	
CN ₈					0.00	predev. flow rate assumes	
CN ₉					0.00	does not include offsite	
CN ₁₀					0.00	<u>flows.</u>	
			Total	47.31	3541.81		
			Со	mposite CN =	75		

Time of Concentration, T _c							
2 yr. Precip. (in.) = 2.73							
Flow Segment	Flow Regime	Land Cover	Length (ft)	Roughness Coeff., n	Slope (ft/ft)	Travel Time, T _t (min.)	
1							
2							
3							
4							
5							
6							
7							
8							
9							
10						10.0	
Total Time of Concentration, T _c (min.) =					10.0		

Runoff						
	1 Yr.	10 Yr.	100 Yr.			
Precipitation (in.), P	2.26	4.06	6.44			
Composite CN	75	75	75			
Storage (in.) S=1000/CN-10	3.33	3.33	3.33			
Initial abstraction (in.), I _a =0.2S	0.67	0.67	0.67			
Runoff depth (in.), $Q=(P-0.2S)^2/[(P-I_a)+S]$	0.52	1.71	3.66			
Runoff volume (ac-ft), RV = Q/12*A	2.03	6.75	14.43			
Flow rate (cfs), q _{peak} from hydrograph						
Hydrograph Number:	54					

Hydrograph Number:

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 54

Onsite Only Total Postdev

Hydrograph type	= SCS Runoff	Peak discharge	= 31.77 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 91,260 cuft
Drainage area	= 47.310 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Informational sheet (5 of 7):

This sheet provides a reference point for the undetained peak flow rate from ONLY the onsite area in the post-developed condition. The flow rate assumes no detention onsite and does not include offsite flows.

Thursday, 11 / 3 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 54

Onsite Only Total Postdev

Hydrograph type	= SCS Runoff	Peak discharge	= 115.81 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 303,163 cuft
Drainage area	= 47.310 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Informational sheet (6 of 7):

This sheet provides a reference point for the undetained peak flow rate from ONLY the onsite area in the post-developed condition. The flow rate assumes no detention onsite and does not include offsite flows.

Thursday, 11 / 3 / 2022

Stormwater Quantity Compliance (9VAC25-870-66)

Drainage Area:	Onsite Only Total			
	Predev.	Postdev.		
Area (ac.)	47.31	47.31		
T _c (min.)	18.2	10.0		

Precipitation Data			
Return			
Frequency	P (in.)		
1 Yr.	2.26		
10 Yr.	4.06		

	1 Yr.		10 Yr.	
	Predev.	Postdev.	Predev.	Postdev.
VRRM CN	66	75	66	75
Storage (in.) S=1000/CN-10	5.15	3.33	5.15	3.33
Initial abstraction (in.), I _a =0.2S	1.03	0.67	1.03	0.67
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.24	0.52	1.12	1.71
Runoff volume (ac-ft), RV = Q/12*A	0.93	2.03	4.42	6.75
Flow rate (cfs), q _{peak} from hydrograph	6.8		56.63	

1 Year Channel Protection (9VAC25-870-66.B)					
q_allowable <= I.F.* (q_pre * RV_pre)/RV_	q_allowable <= I.F.* (q_pre * RV_pre)/RV_post)				
Improvement Factor (I.F.)	0.8	needed):			
q_pre (cfs)	6.80				
RV_pre (ac-ft)	0.93				
RV_post (with runoff reduction) (ac-ft)	2.03				
q_allowable (cfs)	2.50				
q_post (cfs)					
Check (q_post <= q_allowable)					

10 Year Flood Protection (9VAC25-870-66.C)					
q_post <= q_pre Addressed by alternative method (if needed):					
q_pre (cfs)	56.63				
q_post (cfs)					
Check (q_post <= q_pre)					

Other notes: This sheet is included only to detail the required channel protection reduction in flow rate if the project were evaluated as an individual site (i.e. offsite areas are treated as "bypass/pass-through" flow and only onsite areas are plugged into the "energy balance" equation.

1 year reduction required: 6.80 cfs - 2.50 cfs = 4.30 cfs

4.30 cfs represents the reduction in peak flow rate the project would be required to demonstrate at the point of discharge.

Informational sheet (7 of 7):

This sheet is used to demonstrate the required reduction in the 1-year event if the "energy balance" equation were applied ONLY to the project site (i.e. offsite flows were treated as pass-through and added to the allowable rate calculated here). The predev. flow rate assumes no detention onsite and does not include offsite flows. Undetained post-dev. flows from pages 5 and 6 are omitted because they represent and undetained condition. Those flows would need to reduced via detention facilities to the targets on this sheet if the site were developed without regional detention in mind.

Regional Stormwater Benefit Comparison						
	-	1 yr	10 yr	Reference		
	Predevelopment-Onsite area only	6.80 cfs	56.63 cfs	Hyd. 53		
	Change required per regulations	Post-dev. peak flow rate must be less than the "energy balance" equation result (1.87 cfs)	Post-dev. peak flow rate must be less than the Predev. peak flow rate above	Quantity Compliance Sheet (Info. Sheet 4 of 4) for "energy balance" solution		
development WITHOUT regional	Net change required from predev. peak flow rate to meet 9VAC25-870-66. regulations	2.50 – 6.80 = -4.30 cfs	0 cfs	NA		
management	Predevelopment-Entire contributing drainage area (flow currently experienced at the downstream property line; includes onsite and offsite areas)	75.45 cfs	175.77 cfs	Hyd. 32		
	Max. allowable peak flow rate at property line	75.45 – 4.30 = 71.15 cfs	175.77 cfs	NA		
Subdivision development WITH regional stormwater management	Post-development-Entire contributing drainage area (flow experienced at downstream property line after conceptual SWM improvements; includes fully developed onsite and offsite areas)	24.83 cfs	90.38 cfs	Hyd. 50		
	Net change achieved	24.83 – 71.15 = -46.32 cfs	90.38 – 175.77 = -85.39 cfs	NA		
Comparison of development	Net change WITHOUT regional SWM	-4.30 cfs	0 cfs	NA		
WITH and WITHOUT	Net change WITH regional SWM	-46.32 cfs	-85.39 cfs	NA		
regional stormwater management	Flow rate reduction achieved beyond requirement	-46.32 – (-4.30) = -42.02 cfs	-85.39 – 0 = -85.39 cfs	NA		

<u>NOTE:</u> The data above reflect the impact of construction of the ponds and subdivision depicted in this document. The data is preliminary in nature and subject to change during engineering design.

Point of Analysis B

Drainage Area Runoff and Time of Concentration

Drainage Area: POA B offsite

	PRE & POST					
Composite Curve Number (CN)						Notes:
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN ₁	В	Open space	61	0.40	24.49	
CN ₂	В	Impervious	98	0.08	8.20	
CN ₃	C	Open space	74	0.68	50.47	
CN ₄	С	Impervious	98	0.13	13.12	
CN ₅					0.00	
CN ₆					0.00	
CN ₇					0.00	
CN ₈					0.00	
CN ₉					0.00	
CN ₁₀					0.00	
			Total	1.30	96.28	
			Со	mposite CN =	74	

Time of Concentration, T _c						
		2 yr. Precip. (in.) =	2.73			
				Roughness	Slope	Travel Time, T _t
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)
1	Sheet Flow	Grass	100	0.24	0.08	8.9
2	Shallow Conc.	Unpaved	332		0.063	1.4
3						
4						
5						
6						
7						
8						
9						
10						
		Tota	l Time of Co	ncentration, 1	Γ _c (min.) =	10.2

Runoff					
	1 Yr.	10 Yr.	100 Yr.		
Precipitation (in.), P	2.26	4.06	6.44		
Composite CN	74	74	74		
Storage (in.) S=1000/CN-10	3.51	3.51	3.51		
Initial abstraction (in.), I _a =0.2S	0.70	0.70	0.70		
Runoff depth (in.), $Q=(P-0.2S)^2/[(P-I_a)+S]$	0.48	1.64	3.56		
Runoff volume (ac-ft), RV = Q/12*A	0.05	0.18	0.39		
Flow rate (cfs), q _{peak} from hydrograph	0.79	3.04			
Hydrograph Number:	36				

ał

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 36

POA B Offsite (pre and post)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.791 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 2,327 cuft
Drainage area	= 1.300 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.20 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 36

POA B Offsite (pre and post)

= SCS Runoff	Peak discharge	= 3.044 cfs
= 10 yrs	Time to peak	= 722 min
= 2 min	Hyd. volume	= 7,983 cuft
= 1.300 ac	Curve number	= 74
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 10.20 min
= 4.06 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 10 yrs = 2 min = 1.300 ac = 0.0 % = User = 4.06 in = 24 hrs	= SCS RunoffPeak discharge= 10 yrsTime to peak= 2 minHyd. volume= 1.300 acCurve number= 0.0 %Hydraulic length= UserTime of conc. (Tc)= 4.06 inDistribution= 24 hrsShape factor

Drainage Area Runoff and Time of Concentration

Drainage Area: POA B onsite

POSIDEVELOPMENI						
	Composite Curve Number (CN)				Notes:	
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN ₁	В	Open space	61	0.22	13.16	
CN ₂	В	Impervious	98	0.06	5.64	
CN ₃	С	Open space	74	0.30	22.34	
CN ₄	С	Impervious	98	0.02	1.70	
CN ₅					0.00	
CN ₆					0.00	
CN ₇					0.00	
CN ₈					0.00	
CN ₉					0.00	
CN ₁₀					0.00	
			Total	0.59	42.83	
Composite CN = 72						

Time of Concentration, T _c						
2 yr. Precip. (in.) = 2.73						
				Roughness	Slope	Travel Time, T _t
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)
1	Sheet Flow	Grass	100	0.24	0.07	9.4
2	Shallow Conc.	Unpaved	375		0.067	1.5
3						
4						
5						
6						
7						
8						
9						
10						
Total Time of Concentration, T _c (min.) =				10.9		

Runoff				
	1 Yr.	10 Yr.	100 Yr.	
Precipitation (in.), P	2.26	4.06	6.44	
Composite CN	72	72	72	
Storage (in.) S=1000/CN-10	3.89	3.89	3.89	
Initial abstraction (in.), I _a =0.2S	0.78	0.78	0.78	
Runoff depth (in.), $Q=(P-0.2S)^2/[(P-I_a)+S]$	0.41	1.50	3.36	
Runoff volume (ac-ft), RV = Q/12*A	0.02	0.07	0.17	
Flow rate (cfs), q _{peak} from hydrograph	0.29	1.26		
Hydrograph Number:	38			

grap

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 38

POA B Onsite Post

SCS Runoff	Peak discharge =	= 0.288 cfs
= 1 yrs	Time to peak	= 722 min
= 2 min	Hyd. volume	= 903 cuft
= 0.590 ac	Curve number	= 72
= 0.0 %	Hydraulic length :	= 0 ft
= User	Time of conc. (Tc)	= 10.90 min
= 2.26 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	= SCS Runoff = 1 yrs = 2 min = 0.590 ac = 0.0 % = User = 2.26 in = 24 hrs	= SCS RunoffPeak discharge= 1 yrsTime to peak= 2 minHyd. volume= 0.590 acCurve number= 0.0 %Hydraulic length= UserTime of conc. (Tc)= 2.26 inDistribution= 24 hrsShape factor

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 38

POA B Onsite Post

Hydrograph type	= SCS Runoff	Peak discharge	= 1.258 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 3,318 cuft
Drainage area	= 0.590 ac	Curve number	= 72
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.90 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Monday, 11 / 28 / 2022

Hyd. No. 39

POA B Post total

Hydrograph type Storm frequency	= Combine = 1 yrs	Peak discharge Time to peak	= 1.079 cfs = 722 min
Time interval	= 2 min	Hyd. volume	= 3,231 cuft
Inflow hyds.	= 36, 38	Contrib. drain. area	= 1.890 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 39

POA B Post total

Storm frequency= 10 yrsTime to peak= 722 minTime interval= 2 minHyd. volume= 11,301 cuftInflow hyds.= 36, 38Contrib. drain. area= 1.890 ac	Hydrograph type	= Combine	Peak discharge	= 4.302 cfs
	Storm frequency	= 10 yrs	Time to peak	= 722 min
	Time interval	= 2 min	Hyd. volume	= 11,301 cuft
	Inflow hyds.	= 36, 38	Contrib. drain. area	= 1.890 ac

Monday, 11 / 28 / 2022
Stormwater Quantity Compliance (9VAC25-870-66)

Drainage Area:	POA B onsite		
	Predev.	Postdev.	
Area (ac.)	1.17	0.59	
T _c (min.)	11.9	10.9	

Precipitation Data	
Return	
Frequency	P (in.)
1 Yr.	2.26
10 Yr.	4.06

	1 Yr.		10 Yr.	
	Predev.	Postdev.	Predev.	Postdev.
VRRM CN	73	72	73	72
Storage (in.) S=1000/CN-10	3.70	3.89	3.70	3.89
Initial abstraction (in.), I _a =0.2S	0.74	0.78	0.74	0.78
Runoff depth (in.), $Q=(P-0.2S)^2/[(P-I_a)+S]$	0.44	0.41	1.57	1.50
Runoff volume (ac-ft), RV = Q/12*A	0.04	0.02	0.15	0.07
Flow rate (cfs), q _{peak} from hydrograph	0.64	0.288	2.617	1.258

1 Year Channel Protection (9VAC25-870-66.B)			
q_allowable <= I.F.* (q_pre * RV_pre)/RV_post)		Addressed by alternative method (if	
Improvement Factor (I.F.)	0.8	needed):	
q_pre (cfs)	0.64		
RV_pre (ac-ft)	0.04	Note: energy balance result is less than	
RV_post (with runoff reduction) (ac-ft)	0.02	the predev. peak flow rate, therefore,	
q_allowable (cfs)	0.64	the allowable peak flow rate = the	
q_post (cfs)	0.288	predev. peak flow rate.	
Check (q_post <= q_allowable)	ОК	1	

10 Year Flood Protection (9VAC25-870-66.C)		
q_post <= q_pre		Addressed by alternative method (if needed):
q_pre (cfs)	2.617	
q_post (cfs)	1.258	
Check (q_post <= q_pre)	ОК	

Other notes: This sheet is included only to determine the req. reduction with only onsite areas and flow rates being plugged into the "energy balance" equation. This reduction is subtracted from the total combined pre. flow to determine the allowable flow rate at Pt. of Analysis B.

1 year reduction required: 0.64 cfs - 0.64 cfs = 0.00 cfs

0.00 cfs represents the reduction in peak flow rate the project would be required to demonstrate at the point of discharge.

	-	Point of Analysis B Regulatory	/ Req.	
		1 yr	10 yr	Reference
Predevelopment-Onsite area only0.64 cfsChange required per regulationsPost-dev. peak flow rate must be less than the "energy balance" equat result (0.64 cfs)Predev.Net change required from predev. peak flow rate to meet 9VAC25-870-66. regulations0.64 - 0.64 = 0.00 cfsPredevelopment-Entire contributing drainage area (includes onsite and offsite areas)1.43 cfsMax. allowable peak flow rate at property line, Q_allow1.43 - 0.00 = 1.43 cfs	Predevelopment-Onsite area only	0.64 cfs	2.62 cfs	Hyd. 35
	Change required per regulations	Post-dev. peak flow rate must be less than the "energy balance" equation result (0.64 cfs)	Post-dev. peak flow rate must be less than the Predev. peak flow rate above	Quantity Compliance Sheet for "energy balance" solution
	Net change required from predev. peak flow rate to meet 9VAC25-870-66. regulations	0.64 – 0.64 = 0.00 cfs	0 cfs	NA
	Predevelopment-Entire contributing drainage area (includes onsite and offsite areas)	1.43 cfs	5.66 cfs	Hyd. 37
	1.43 – 0.00 = 1.43 cfs	5.66 cfs	NA	
F c Postdev. a c	Postdevelopment-Entire contributing drainage area (includes onsite and offsite areas), Q_post	1.08 cfs	4.30 cfs	Hyd. 39
	Regs. Met?	Qpost <qallow td="" yes<="" ∴=""><td>Qpost<qallow td="" yes<="" ∴=""><td>NA</td></qallow></td></qallow>	Qpost <qallow td="" yes<="" ∴=""><td>NA</td></qallow>	NA

<u>NOTE:</u> The data above reflect the impact of construction of the ponds and subdivision depicted in this document. The data is preliminary in nature and subject to change during engineering design.

APPENDIX A: PRELMINARY REDRAWN CREEK VALLEY OVERLAY

C:\DROPBOXIE&A\CARY HOPPER\GLADE SPRING\CADIREZONING CADIRZ-CVO EXHIBIT.I 2/6/2023 307:04 PM

APPENDIX B: PRELMINARY WETLANDS AND JURISDICTIONAL WATERS EVALUATION

PERENNIAL STREAM CHANNEL (R3)

INTERMITTENT STREAM CHANNEL (R4)

EPHEMERAL STREAM CHANNEL (R6)

PALUSTRINE EMERGENT WETLAND (PEM)

APPROXIMATE WETLAND DATAPOINT LOCATION

STUDY AREA

MAN-MADE BMP

*WATER FEATURES WERE DELINEATED BY ECS ON FEBRUARY 17, 2022 AND LOCATED USING A SUB-METER ACCURACY GPS UNIT.

**WATER FEATURES DEPICTED HEREIN SHOULD BE CONSIDERED PRELIMINARY UNTIL CONFIRMED BY THE U.S.

Michael Formica

From:	Justin M. Hughes, CHMM, PWS <jhughes@ecslimited.com></jhughes@ecslimited.com>
Sent:	Thursday, July 14, 2022 5:21 PM
То:	Michael Formica; Meredith Jones; caryhopper@msn.com
Cc:	Steven S. Hay
Subject:	RE: Glade Road Waters of the US Draft Map

Thank you for sending, Michael.

Meredith, I overlaid the wetland/stream features on the proposed grading contours and came up with 537 lf R6 stream impacts and 0.11-ac PEM wetland proposed impacts. Also, for planning purposes if we cannot get that central feature ruled as non-jurisdictional that would add 0.25-ac of PFO wetland impacts. PEM wetland impacts are mitigation on a 1:1 basis and PFO on a 2:1 basis. We talked to some mitigation banks in the area and found credits for \$425/linear foot of stream and \$50,000/acre of wetland impacts.

Stream 537 lf x \$425=\$228,225 Wetland PEM 0.11-ac x \$50k = \$5,500 PFO (if needed) 0.5-ac x \$50k = \$25,000

Total \$233,725 Total with PFO \$258,725

This is a good ballpark number to use during your meetings with the City but I do think we can get it down some as the streams proposed for impact are not of very good quality so we will likely not have to mitigate for each LF based on their USM scores. Please let me know if you have any questions!

Thanks,

JUSTIN M. HUGHES, CHMM, PWS | Environmental Senior Project Manager ECS MID-ATLANTIC, LLC | T 804.353.6333 D 804.299.4880 C 804.971.3576 JHughes@ecslimited.com | www.ecslimited.com

Confidential/proprietary message/attachments. Delete message/attachments if not intended recipient.

