PREDEVELOPMENT

Volume 2 of 3 Vol. 1: pages 1-33 Vol. 2: pages 34-136 Vol. 3: pages 137-241

Point of Analysis A

37

Drainage Area Runoff and Time of Concentration

Drainage Area: To 460 northern culvert crossing (excl. Union) PREDEVELOPMENT

	C	omposite Curve Numl	per (CN)			Notes:
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN ₁	-	Impervious	98	22.09	2164.39	
CN ₂	В	Managed Turf	61	7.75	472.64	
CN ₃	С	Managed Turf	74	31.99	2367.60	
CN_4	D	Managed Turf	80	0.07	5.41	
CN ₅	В	Brush (Good)	48	0.00	0.00	
CN ₆	С	Brush (Good)	65	0.00	0.00	
CN ₇	D	Brush (Good)	73	2.34	171.16	
CN ₈					0.00	
CN ₉					0.00	
CN ₁₀					0.00	
			Total	64.24	5181.21	
			Со	mposite CN =	81	

	Time of Concentration, T _c							
		2 yr. Precip. (in.) =	2.73					
				Roughness		Travel Time, T _t		
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	Slope (ft/ft)	(min.)		
1	Sheet Flow	Grass	100	0.24	0.022	14.9		
2	Shallow Conc.	Unpaved	452		0.086	1.6		
3	Channel	Concrete	244	0.013	0.029	0.5		
4	Channel	30" Concrete Pipe	1238	0.013	0.028	2.4		
5								
6								
7								
8								
9								
10								
			Total Time o	f Concentrati	on, T _c (min.) =	19.3		

Runoff						
	1 Yr.	10 Yr.	100 Yr.			
Precipitation (in.), P	2.26	4.06	6.44			
Composite CN	81	81	81			
Storage (in.) S=1000/CN-10	2.35	2.35	2.35			
Initial abstraction (in.), I _a =0.2S	0.47	0.47	0.47			
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.78	2.17	4.29			
Runoff volume (ac-ft), RV = Q/12*A	4.15	11.63	22.95			
Flow rate (cfs), q _{peak} from hydrograph	55.43	161.91				
Hudrograph Number	2					

Hydrograph Number: 2

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

To 460 North Culvert (excluding Union)

CS Runoff	Peak discharge =	55.43 cfs
yrs	Time to peak =	• 726 min
min	Hyd. volume =	180,801 cuft
4.240 ac	Curve number =	: 81
.0 %	Hydraulic length =	• 0 ft
ser	Time of conc. (Tc) =	: 19.30 min
.26 in	Distribution =	∶ Type II
4 hrs	Shape factor =	484
	CS Runoff yrs min 240 ac 0 % ser 26 in 4 hrs	CS RunoffPeak discharge=yrsTime to peak=minHyd. volume=4.240 acCurve number=0 %Hydraulic length=serTime of conc. (Tc)=26 inDistribution=4 hrsShape factor=

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 2

To 460 North Culvert (excluding Union)

Hydrograph type =	SCS Runoff	Peak discharge	= 161.91 cfs
Storm frequency =	10 yrs	Time to peak	= 724 min
Time interval =	2 min	Hyd. volume	= 506,496 cuft
Drainage area =	64.240 ac	Curve number	= 81
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 19.30 min
Total precip. =	4.06 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

12.02.2020 DATE 12/2/2020

Not to scale NOT FOR CONSTRUCTION

WORKSHEET FOR SCS HYDROLOGIC PARAMETERS

Site Conditions:	Existing X Proposed	Project: Sturbridge Apartments Subarea Number: 1b Bypass - No Detention
	Existing	By: Justin Brown
Off-Site Land Use:	X Proposed	Date: 4/13/2020

RUNOFF CURVE NUMBER

Soil Group		Land Use or Zoning	Area (acres)	RCN	RCN x Area
В	On-Site	Impervious	0.00	98	0.098
В	On-Site	Open Space	0.25	61	15.25
С	On-Site	Impervious	0.00	98	0
С	On-Site	Open Space	0.42	74	31.08
D	On-Site	Impervious	0.00	80	0
D	On-Site	Open Space	0.00	80	0

Total Area

0.001 sq. mi

Weighted RCN =

69

Notes:

0.67

ac

Time of Concentration = 8.28 minutes (See Attached)

TR 55 Worksheet: Time of Concentration (Tc)	PROJEC	PROJECT: TNHSE19001			PN: (Post-DEVELOPMENT: PO		
	1	2	3	4	5	6	6
Sheet Flow		1		1 A.			
Surface description (Table 3-1)	Dense Grasses						
Manning's roughness coeff., n (Table 3-1)	0.24					1	
Flow length, L (total L < 100 ft) ft	100.00			1	Sec. 14	1	
Two-year 24-hour rainfall, P2 in	2.74						
Land slope, S ft/ft	0.1500		1				
$T_t = (0.007 (nL)^{0.8}) / (P_2^{0.5} s^{0.4}) \dots hr$	0.11	0.00	0.00	0.00	0.00	0.00	0.00
Shallow Concetrated Flow		-					
Surface description (paved=1 or unpaved=0)	0	0	0	0	0	0	0
Flow length, L ft	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Watercourse slope, S ft/ft	0.0180	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100
Average velocity, V ft/s	-			-	-	-	-
Unpaved V = $16.1345 (s)^{0.5}$	2.16	1.61	1.61	1.61	1.61	1.61	1.61
Paved $V = 20.3282 (s)^{0.5}$							
T _t = L /3600Vhr	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Channel Flow	CHANNEL	1					
Cross sectional flow area, A ft ²	3.00			1	1		
Wetted perimeter, Pw ft	6.00						
Hydraulic radius, r = A/Pwft	0.50	0.00	0.00	0.00	0.00	0.00	0.00
Channel slope, s ft/ft	0.068						
Vanning's roughness coefficient, n	0.070	0.035	0.069	0.013	0.013	0.013	0.013
/elocity, V=(1.49/n)R ^{2/3} s ^{1/2} ft	3.50	0.00	0.00	0.00	0.00	0.00	0.00
Flow length, L ft	293.0						
Γ _t = L/3600Vhr	0.023	0.000	0.000	0.000	0.000	0.000	0.000
Sub Basin Tc = $T_{sheetflow}+T_{shallow concentrated}+T_{channel}$	0.14 hr	0.00 hr	0.00 hr	0.00 hr	0.00 hr	0.00 hr	0.00 hr
Sub Basin Tc = $T_{sheetflow} + T_{shallow concentrated} + T_{channel} =$	8.28 min	0.00 min	0.00 min	0.00 min	0.00 min	0.00 min	0.00 min

8.28 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Union Bypass To 460 N Culvert

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Union Bypass To 460 N Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 1.371 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 3,176 cuft
Drainage area	= 0.670 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.30 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

WORKSHEET FOR SCS HYDROLOGIC PARAMETERS

Site Conditions:	ExistingXProposed	Project: Sturbridge Apartments Subarea Number: 1a Detention	
	Existing	By: Justin Brown	_
Off-Site Land Use:	X Proposed	Date: 4/13/2020	

RUNOFF CURVE NUMBER

Group		Land Use or Zoning	Area (acres)	RCN	RCN x Area
В	On-Site	Impervious	1.54	0.9	150.00
В	On-Site	Open Space	0.45	90	150.92
С	On-Site	Impervious	0.45	00	27.45
С	On-Site	Open Space	2.70	90	270.48
D	On-Site	Impervious	1.00	74	79.55
D	On-Site	Open Space	0.00	80	0
					1

Total Area 5.83

0.009 sq. mi

Weighted RCN =

91

Notes:

ac

Time of Concentration = 13.63 minutes (See Attached)

TR 55 Worksheet: Time of Concentration (Tc)	PROJEC	T: TNHSE190	01	PN: (Post-DEVELOPMENT: PO/			POA#1 (
	1	2	3	4	5	6	6]
Sheet Flow								1
Surface description (Table 3-1)	Dense Grasses		1					1
Manning's roughness coeff., n (Table 3-1)	0.24					the second		
Flow length, L (total L < 100 ft) ft	100.00		1			1.000		1
Two-year 24-hour rainfall, P2 in	2.74							1
Land slope, S ft/ft	0.0880				1		1	1
$T_t = (0.007 (nL)^{0.8}) / (P_2^{0.5} s^{0.4}) \dots hr$	0.14	0.00	0.00	0.00	0.00	0.00	0.00	1
Shallow Concetrated Flow								1
Surface description (paved=1 or unpaved=0)	0	1	0	0	0	0	0	1
Flow length, L ft	155.0	190.0	0.0	0.0	0.0	0.0	0.0	1
Watercourse slope, S ft/ft	0.0840	0.0210	0.0100	0.0100	0.0100	0.0100	0.0100	1
Average velocity, V ft/s				•		-		
Unpaved V = 16.1345 (s) ^{0.5}	4.68		1.61	1.61	1.61	1.61	1.61	1
Paved $V = 20.3282 (s)^{0.5}$		2.95					16	1
T _t = L /3600V hr	0.01	0.02	0.00	0.00	0.00	0.00	0.00	1
Channel Flow	CHANNEL							1
Cross sectional flow area, A ft ²	3.10							1
Wetted perimeter, Pw ft	6.30							
Hydraulic radius, r = A/Pwft	0.49	0.00	0.00	0.00	0.00	0.00	0.00]
Channel slope, s ft/ft	0.010				1			
Manning's roughness coefficient, n	0.045	0.035	0.069	0.013	0.013	0.013	0.013	
Velocity, V=(1.49/n)R ^{2/3} s ^{1/2} ft	2.06	0.00	0.00	0.00	0.00	0.00	0.00	
Flow length, L ft	431.0							10
T _t = L/3600V hr	0.058	0.000	0.000	0.000	0.000	0.000	0.000	
Sub Basin Tc = $T_{sheetflow} + T_{shallow concentrated} + T_{channel} =$	0.21 hr	0.02 hr	0.00 hr	0.00 hr	0.00 hr	0.00 hr	0.00 hr	
Sub Basin Tc = T _{sheetflow} +T _{shallow} concentrated+T _{channel} =	12.56 min	1.07 min	0.00 min	0.00 min	0.00 min	0.00 min	0.00 min	13

13:63 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Union North Detention inflow

Hydrograph type	= SCS Runoff	Peak discharge	= 10.22 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 28,759 cuft
Drainage area	= 5.830 ac	Curve number	= 91
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.60 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Union North Detention inflow

Hydrograph type	= SCS Runoff	Peak discharge	= 21.90 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 63,445 cuft
Drainage area	= 5.830 ac	Curve number	= 91
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.60 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 10 - Union North Underground Det.

Pond Data

UG Chambers -Invert elev. = 2041.00 ft, Rise x Span = 4.00×4.00 ft, Barrel Len = 204.00 ft, No. Barrels = 5, Slope = 0.50%, Headers = Yes **Encasement -**Invert elev. = 2040.50 ft, Width = 6.50 ft, Height = 5.50 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	2040.50	n/a	0	0
0.65	2041.15	n/a	613	613
1.30	2041.80	n/a	2,016	2,629
1.96	2042.46	n/a	2,971	5,600
2.61	2043.11	n/a	3,384	8,985
3.26	2043.76	n/a	3,509	12,493
3.91	2044.41	n/a	3,432	15,925
4.56	2045.06	n/a	3,103	19,028
5.22	2045.72	n/a	2,379	21,407
5.87	2046.37	n/a	1,893	23,300
6.52	2047.02	n/a	1,840	25,140

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 30.00	7.00	5.00	0.00	Crest Len (ft)	= 18.85	0.33	0.00	0.00
Span (in)	= 30.00	8.25	72.00	0.00	Crest El. (ft)	= 2047.52	2045.20	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 2041.00	2041.00	2043.50	0.00	Weir Type	= 1	Rect		
Length (ft)	= 30.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 2.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	2040.50	0.00	0.00	0.00		0.00	0.00					0.000
0.07	61	2040.56	0.00	0.00	0.00		0.00	0.00					0.000
0.13	123	2040.63	0.00	0.00	0.00		0.00	0.00					0.000
0.20	184	2040.70	0.00	0.00	0.00		0.00	0.00					0.000
0.26	245	2040.76	0.00	0.00	0.00		0.00	0.00					0.000
0.33	307	2040.83	0.00	0.00	0.00		0.00	0.00					0.000
0.39	368	2040.89	0.00	0.00	0.00		0.00	0.00					0.000
0.46	429	2040.96	0.00	0.00	0.00		0.00	0.00					0.000
0.52	491	2041.02	0.00 ic	0.00 ic	0.00		0.00	0.00					0.003
0.59	552	2041.09	0.04 ic	0.04 ic	0.00		0.00	0.00					0.038
0.65	613	2041.15	0.10 ic	0.10 ic	0.00		0.00	0.00					0.098
0.72	815	2041.22	0.18 ic	0.18 ic	0.00		0.00	0.00					0.180
0.78	1,017	2041.28	0.29 ic	0.28 ic	0.00		0.00	0.00					0.277
0.85	1,218	2041.35	0.39 ic	0.39 ic	0.00		0.00	0.00					0.391
0.91	1,420	2041.41	0.52 ic	0.52 ic	0.00		0.00	0.00					0.517
0.98	1,621	2041.48	0.66 ic	0.66 ic	0.00		0.00	0.00					0.663
1.04	1,823	2041.54	0.84 ic	0.81 ic	0.00		0.00	0.00					0.812
1.11	2,025	2041.61	0.97 ic	0.95 ic	0.00		0.00	0.00					0.950
1.17	2,226	2041.67	1.04 ic	1.04 ic	0.00		0.00	0.00					1.044
1.24	2,428	2041.74	1.13 ic	1.12 ic	0.00		0.00	0.00					1.125
1.30	2,629	2041.80	1.21 ic	1.21 ic	0.00		0.00	0.00					1.206
1.37	2,926	2041.87	1.29 ic	1.29 ic	0.00		0.00	0.00					1.285
1.43	3,224	2041.93	1.37 ic	1.36 ic	0.00		0.00	0.00					1.360
1.50	3,521	2042.00	1.46 ic	1.43 ic	0.00		0.00	0.00					1.427
1.56	3,818	2042.06	1.55 ic	1.49 ic	0.00		0.00	0.00					1.491
1.63	4,115	2042.13	1.56 ic	1.56 ic	0.00		0.00	0.00					1.564
1.70	4,412	2042.19	1.65 ic	1.63 ic	0.00		0.00	0.00					1.628
1.76	4,709	2042.26	1.76 ic	1.68 ic	0.00		0.00	0.00					1.684
1.83	5.006	2042.32	1.76 ic	1.75 ic	0.00		0.00	0.00					1.755
1.89	5,303	2042.39	1.86 ic	1.81 ic	0.00		0.00	0.00					1.807
1.96	5,600	2042.46	1.87 ic	1.87 ic	0.00		0.00	0.00					1.869
2.02	5,939	2042.52	1.97 ic	1.92 ic	0.00		0.00	0.00					1.921
	3,000												

Union North Underground Det. Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
2.09	6,277	2042.59	1.98 ic	1.98 ic	0.00		0.00	0.00					1.980
2.15	6,616	2042.65	2.09 ic	2.03 ic	0.00		0.00	0.00					2.029
2.22	6,954	2042.72	2.09 ic	2.09 ic	0.00		0.00	0.00					2.088
2.28	7,292	2042.78	2.21 ic	2.13 ic	0.00		0.00	0.00					2.131
2.35	7,631	2042.85	2.21 ic	2.19 ic	0.00		0.00	0.00					2.188
2.41	7,969	2042.91	2.23 ic	2.23 ic	0.00		0.00	0.00					2.232
2.48	8,308	2042.98	2.33 ic	2.28 ic	0.00		0.00	0.00					2.283
2.54	8,646	2043.04	2.33 IC	2.33 IC	0.00		0.00	0.00					2.334
2.01	8,985	2043.11	2.46 IC	2.37 IC	0.00		0.00	0.00					2.374
2.07	9,335	2043.17	2.40 IC	2.42 IC 2.47 ic	0.00		0.00	0.00					2.424
2.74	9,000	2043.24	2.47 IC 2.59 ic	2.47 IC 2.51 ic	0.00		0.00	0.00					2.470
2.00	10,007	2043.37	2.50 ic	2.51 ic	0.00		0.00	0.00					2.510
2.07	10,000	2043 43	2.00 ic	2.00 ic	0.00		0.00	0.00					2 602
3.00	11.090	2043.50	2.73 ic	2.64 ic	0.00		0.00	0.00					2.639
3.06	11,441	2043.56	3.02 ic	2.66 ic	0.33 ic		0.00	0.00					2.994
3.13	11,791	2043.63	3.64 ic	2.66 ic	0.95 ic		0.00	0.00					3.610
3.19	12,142	2043.69	4.52 ic	2.64 ic	1.76 ic		0.00	0.00					4.394
3.26	12,493	2043.76	5.33 ic	2.62 ic	2.71 ic		0.00	0.00					5.333
3.33	12,836	2043.82	6.39 ic	2.60 ic	3.79 ic		0.00	0.00					6.393
3.39	13,180	2043.89	7.56 ic	2.58 ic	4.98 ic		0.00	0.00					7.562
3.46	13,523	2043.96	8.55 ic	2.57 ic	5.99 ic		0.00	0.00					8.554
3.52	13,866	2044.02	9.31 ic	2.58 ic	6.73 ic		0.00	0.00					9.305
3.59	14,209	2044.09	10.06 ic	2.59 ic	7.40 ic		0.00	0.00					9.985
3.65	14,552	2044.15	10.61 ic	2.60 IC	8.01 IC		0.00	0.00					10.61
3.72	14,896	2044.22	11.19 IC	2.62 IC	8.58 IC		0.00	0.00					11.19
3.78	15,239	2044.28	11.75 IC 12.27 io	2.03 IC	9.11 IC		0.00	0.00					11.75
3.00	15,002	2044.33	12.27 IC	2.00 IC 2.68 ic	9.02 IC		0.00	0.00					12.27
3.98	16 236	2044.41	13 35 ic	2.00 ic 2.70 ic	10.10 ic		0.00	0.00					13.25
4 04	16,546	2044 54	13.91 ic	2.70 ic	10.99 ic		0.00	0.00					13 71
4 11	16,856	2044 61	14 19 ic	2.72 ic	11 41 ic		0.00	0.00					14 16
4.17	17,166	2044.67	14.74 ic	2.77 ic	11.82 ic		0.00	0.00					14.59
4.24	17,477	2044.74	15.02 ic	2.80 ic	12.21 ic		0.00	0.00					15.01
4.30	17,787	2044.80	15.57 ic	2.82 ic	12.59 ic		0.00	0.00					15.41
4.37	18,097	2044.87	15.85 ic	2.85 ic	12.96 ic		0.00	0.00					15.81
4.43	18,408	2044.93	16.19 ic	2.87 ic	13.32 ic		0.00	0.00					16.19
4.50	18,718	2045.00	16.66 ic	2.90 ic	13.67 ic		0.00	0.00					16.57
4.56	19,028	2045.06	16.94 ic	2.93 ic	14.02 ic		0.00	0.00					16.94
4.63	19,266	2045.13	17.46 ic	2.95 ic	14.35 ic		0.00	0.00					17.30
4.69	19,504	2045.19	17.72 IC	2.98 IC	14.67 IC		0.00	0.00					17.65
4.76	19,742	2045.26	18.01 IC	3.00 IC	14.99 IC		0.00	0.02					18.01
4.02	19,900	2045.32	10.50 IC	3.03 IC 2.05 io	15.30 IC		0.00	0.05					10.30
4.09	20,210	2045.39	10.70 IC	3.05 iC 3.07 ic	15.01 ic		0.00	0.09					10.70
5.02	20,430	2045.45	19.24 iC	3.07 ic	16.20 ic		0.00	0.14					10.10
5.02	20,034	2045.58	20.01 oc	3 11 ic	16 49 ic		0.00	0.20					19.87
5.15	21,169	2045.65	20.30 oc	3.13 ic	16.78 ic		0.00	0.33					20.24
5.22	21,407	2045.72	20.71 oc	3.15 ic	17.06 ic		0.00	0.41					20.61
5.28	21,597	2045.78	21.08 oc	3.16 ic	17.33 ic		0.00	0.49					20.98
5.35	21,786	2045.85	21.42 oc	3.17 ic	17.60 ic		0.00	0.57					21.34
5.41	21,975	2045.91	21.72 oc	3.19 ic	17.87 ic		0.00	0.66					21.71
5.48	22,164	2045.98	22.15 oc	3.19 ic	18.13 ic		0.00	0.75					22.07
5.54	22,354	2046.04	22.48 oc	3.19 ic	18.39 ic		0.00	0.85					22.43
5.61	22,543	2046.11	22.80 oc	3.19 ic	18.64 ic		0.00	0.95					22.79
5.67	22,732	2046.17	23.10 oc	3.15 ic	18.89 ic		0.00	1.05					23.10
5.74	22,921	2046.24	23.48 oc	3.18 IC	19.14 ic		0.00	1.16					23.48
5.80	23,111	2046.30	23.87 oc	3.20 IC	19.39 IC		0.00	1.27					23.86
5.87	23,300	2046.37	24.25 OC	3.23 IC 2.25 io	19.63 IC		0.00	1.39					24.20
0.90 6.00	23,404	2040.43 20/6 50	24.00 00	3.20 IC	19.07 IC 20.11 in		0.00	1.01					24.03
6.00	23,000 23 852	2040.00	25.01.00	3.20 IC	20.1110 20.3/1 ic		0.00	1.03					25.01
6.13	23,032	2046.63	25.78 00	3.33 ic	20.04 iC		0.00	1.88					25.59
6 19	24 220	2046 69	26 16 00	3.35 ic	20.80 ic		0.00	2 01					26.16
6.26	24,404	2046.76	26.54 oc	3.37 ic	21.03 ic		0.00	2.14					26.54
6.32	24,588	2046.82	26.86 oc	3.40 ic	21.19 ic		0.00	2.28					26.86
6.39	24,772	2046.89	27.18 oc	3.42 ic	21.34 ic		0.00	2.41					27.18
6.45	24,956	2046.95	27.50 oc	3.45 ic	21.50 ic		0.00	2.55					27.50
6.52	25,140	2047.02	27.82 oc	3.47 ic	21.65 ic		0.00	2.70					27.82

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 5

Union N. Basin Out

Hydrograph type	= Reservoir	Peak discharge	= 2.591 cfs
Storm frequency	= 1 yrs	Time to peak	= 738 min
Time interval	= 2 min	Hyd. volume	= 28,310 cuft
Inflow hyd. No.	= 4 - Union North Detention inflo	Max. Elevation	= 2043.42 ft
Reservoir name	= Union North Underground Det	.Max. Storage	= 10,652 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 5

Union N. Basin Out

Hydrograph type	= Reservoir	Peak discharge	= 14.58 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 62,997 cuft
Inflow hyd. No.	= 4 - Union North Detention inflo	Max. Elevation	= 2044.67 ft
Reservoir name	= Union North Underground Det	.Max. Storage	= 17,158 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Total To 460 North Culvert

Hydrograph type	= Combine	Peak discharge	= 57.90 cfs
Storm frequency	= 1 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 209,881 cuft
Inflow hyds.	= 2, 3, 5	Contrib. drain. area	= 64.910 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Total To 460 North Culvert

Hydrograph type	= Combine	Peak discharge	= 175.44 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 572,669 cuft
Inflow hyds.	= 2, 3, 5	Contrib. drain. area	= 64.910 ac

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 8 - 460 North Culvert HW Storage

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 2033.00 ft

Stage / Storage Table

Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
2033.00	00	0	0
2035.00	271	271	271
2036.00	997	634	905
2037.00	1,787	1,392	2,297
2038.00	3,429	2,608	4,905
2039.00	4,748	4,089	8,994
2040.00	7,034	5,891	14,885
2041.00	8,939	7,987	22,871
2042.00	11,317	10,128	32,999
2043.00	13,359	12,338	45,337
2044.00	15,556	14,458	59,795
2045.00	18,050	16,803	76,598
	Elevation (ft) 2033.00 2035.00 2036.00 2037.00 2038.00 2040.00 2041.00 2041.00 2042.00 2043.00 2044.00 2045.00	Elevation (ft)Contour area (sqft)2033.00002035.002712036.009972037.001,7872038.003,4292039.004,7482040.007,0342041.008,9392042.0011,3172043.0013,3592044.0015,5562045.0018,050	Elevation (ft)Contour area (sqft)Incr. Storage (cuft)2033.000002035.002712712036.009976342037.001,7871,3922038.003,4292,6082039.004,7484,0892040.007,0345,8912041.008,9397,9872042.0011,31710,1282043.0013,35912,3382044.0015,55614,4582045.0018,05016,803

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 48.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 48.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 2033.10	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 160.50	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.69	0.00	0.00	n/a	-				
N-Value	= .024	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	(Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00	,		

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	2033.00	0.00										0.000
0.20	27	2033.20	0.09 ic										0.091
0.40	54	2033.40	0.80 ic										0.804
0.60	81	2033.60	2.19 ic										2.195
0.80	108	2033.80	4.22 ic										4.217
1.00	136	2034.00	6.86 ic										6.857
1.20	163	2034.20	10.03 ic										10.03
1.40	190	2034.40	13.78 ic										13.78
1.60	217	2034.60	17.99 ic										17.99
1.80	244	2034.80	22.63 ic										22.63
2.00	271	2035.00	27.66 ic										27.66
2.10	334	2035.10	30.31 ic										30.31
2.20	398	2035.20	32.98 ic										32.98
2.30	461	2035.30	35.78 ic										35.78
2.40	525	2035.40	38.63 ic										38.63
2.50	588	2035.50	41.58 ic										41.58
2.60	651	2035.60	44.49 ic										44.49
2.70	715	2035.70	47.47 ic										47.47
2.80	778	2035.80	50.51 ic										50.51
2.90	842	2035.90	53.53 ic										53.53
3.00	905	2036.00	56.62 ic										56.62
3.10	1,044	2036.10	59.65 ic										59.65
3.20	1,183	2036.20	62.66 ic										62.66
3.30	1,323	2036.30	65.66 ic										65.66
3.40	1,462	2036.40	68.61 ic										68.61
3.50	1,601	2036.50	71.49 ic										71.49
3.60	1,740	2036.60	74.27 ic										74.27
3.70	1,879	2036.70	76.97 ic										76.97
3.80	2,019	2036.80	79.50 ic										79.50
3.90	2,158	2036.90	81.85 ic										81.85
4.00	2,297	2037.00	83.93 ic										83.93
	-												

460 North Culvert HW Storage Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
4.10	2,558	2037.10	85.56 ic										85.56
4.20	2,819	2037.20	87.67 ic										87.67
4.30	3,079	2037.30	89.74 ic										89.74
4.40	3,340 3,601	2037.40	91.75 IC 93.73 ic										91.75
4.50	3 862	2037.60	95.66 ic										95.66
4.70	4,123	2037.70	97.55 ic										97.55
4.80	4,383	2037.80	99.41 ic										99.41
4.90	4,644	2037.90	101.24 ic										101.24
5.00	4,905	2038.00	103.03 ic										103.03
5.10	5,314	2038.10	104.79 IC										104.79
5.20	6 132	2038.30	108.23 ic										108.32
5.40	6.540	2038.40	109.90 ic										109.90
5.50	6,949	2038.50	111.56 ic										111.56
5.60	7,358	2038.60	113.18 ic										113.18
5.70	7,767	2038.70	114.79 ic										114.79
5.80	8,176	2038.80	116.37 ic										116.37
5.90	8,585	2038.90	117.94 IC										117.94
6.00	0,994	2039.00	121 00 ic										121 00
6.20	10.172	2039.20	122.50 ic										121.00
6.30	10,761	2039.30	123.99 ic										123.99
6.40	11,350	2039.40	125.45 ic										125.45
6.50	11,939	2039.50	126.90 ic										126.90
6.60	12,528	2039.60	128.34 ic										128.34
6.70	13,117	2039.70	129.69 oc										129.69
0.80	13,700	2039.80	130.03 OC										130.03
7 00	14,295	2039.90	132 47 oc										132.47
7.10	15.683	2040.10	133.39 oc										133.39
7.20	16,482	2040.20	134.30 oc										134.30
7.30	17,280	2040.30	135.20 oc										135.20
7.40	18,079	2040.40	136.10 oc										136.10
7.50	18,878	2040.50	136.99 oc										136.99
7.60	19,676	2040.60	137.87 OC										137.87
7.70	20,475	2040.70	130.75 0C										130.75
7.90	22.072	2040.90	140.49 oc										140.49
8.00	22,871	2041.00	141.35 oc										141.35
8.10	23,884	2041.10	142.21 oc										142.21
8.20	24,897	2041.20	143.06 oc										143.06
8.30	25,909	2041.30	143.91 oc										143.91
8.40	26,922	2041.40	144.75 OC										144.75
8.60	27,935	2041.50	145.59 0C										145.59
8.70	29,961	2041.70	147.25 oc										147.25
8.80	30,973	2041.80	148.07 oc										148.07
8.90	31,986	2041.90	148.89 oc										148.89
9.00	32,999	2042.00	149.71 oc										149.71
9.10	34,233	2042.10	150.52 oc										150.52
9.20	35,467	2042.20	151.32 oc										151.32
9.30	30,700	2042.30	152.12.00										152.12
9.40	39 168	2042.40	153 71 oc										153.92
9.60	40.402	2042.60	154.50 oc										154.50
9.70	41,636	2042.70	155.29 oc										155.29
9.80	42,869	2042.80	156.07 oc										156.07
9.90	44,103	2042.90	156.85 oc										156.85
10.00	45,337	2043.00	157.62 oc										157.62
10.10	40,783	2043.10	158.39 00										158.39
10.20	49 674	2043.30	159.92 00										159.10
10.40	51.120	2043.40	160.67 oc										160.67
10.50	52,566	2043.50	161.43 oc										161.43
10.60	54,012	2043.60	162.18 oc										162.18
10.70	55,457	2043.70	162.93 oc										162.93
10.80	56,903	2043.80	163.67 oc										163.67
10.90	58,349 50 705	2043.90	164.41 OC										165.15
11.00	61 475	2044.00	165.89 00										165.15
11.20	63,155	2044.20	166.62 oc										166.62
	,												

460 North Culvert HW Storage Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
11.30	64,835	2044.30	167.35 oc										167.35
11.40	66,516	2044.40	168.07 oc										168.07
11.50	68,196	2044.50	168.79 oc										168.79
11.60	69.876	2044.60	169.51 oc										169.51
11.70	71,557	2044.70	170.23 oc										170.23
11.80	73,237	2044.80	170.94 oc										170.94
11.90	74,917	2044.90	171.65 oc										171.65
12.00	76,598	2045.00	172.36 oc										172.36

...End

60

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

460 North Culvert Out

Hydrograph type	= Reservoir	Peak discharge	= 57.76 cfs
Storm frequency	= 1 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 209,881 cuft
Inflow hyd. No.	= 6 - Total To 460 No	rth Culvert Max. Elevation	= 2036.04 ft
Reservoir name	= 460 North Culvert H	IW StorageMax. Storage	= 957 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 7

460 North Culvert Out

Hydrograph type	= Reservoir	Peak discharge	= 144.96 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 572,669 cuft
Inflow hyd. No.	= 6 - Total To 460 North Culvert	Max. Elevation	= 2041.43 ft
Reservoir name	= 460 North Culvert HW Storage	eMax. Storage	= 27,173 cuft

Storage Indication method used.

Drainage Area Runoff and Time of Concentration

	PREDEVELOPIVIENT							
	C	omposite Curve Numl			Notes:			
	Hydrologic Soil							
	Group	Land Cover	CN	Area, A (ac.)	CN*A			
CN ₁	-	Impervious	98	2.26	221.76			
CN ₂	В	Managed Turf	61	0.47	28.64			
CN ₃	С	Managed Turf	74	0.75	55.57			
CN ₄	D	Managed Turf	80	2.35	188.06			
CN ₅	В	Brush (Good)	48	2.59	124.15	Includes adjacent 400 runoff		
CN ₆	С	Brush (Good)	65	3.37	219.10	includes adjacent 400 runon		
CN ₇	D	Brush (Good)	73	2.27	165.87			
CN ₈					0.00			
CN ₉					0.00			
CN ₁₀					0.00			
			14.06	1003.15				
Composite CN =					71			

Drainage Area:	Offsite Village area to Ex TOB Pond
	PREDEVELOPMENT

Time of Concentration, T _c								
2 yr. Precip. (in.) = 2.73								
				Roughness		Travel Time, T _t		
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	Slope (ft/ft)	(min.)		
1	Sheet Flow	Grass	100	0.24	0.07	9.4		
2	Shallow Conc.	Unpaved	40		0.35	0.1		
3	Channel	Grass	1234	0.03	0.032	4.3		
4								
5								
6								
7								
8								
9								
10								
			Total Time o	f Concentrati	on, T _c (min.) =	13.7		

Runoff						
	1 Yr.	10 Yr.	100 Yr.			
Precipitation (in.), P	2.26	4.06	6.44			
Composite CN	71	71	71			
Storage (in.) S=1000/CN-10	4.08	4.08	4.08			
Initial abstraction (in.), I _a =0.2S	0.82	0.82	0.82			
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.38	1.44	3.26			
Runoff volume (ac-ft), RV = Q/12*A	0.44	1.68	3.82			
Flow rate (cfs), q _{peak} from hydrograph	5.15	24.66				
	0					

Hydrograph Number: 8

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Offsite Village Area to Ex TOB Pond

Hydrograph type	= SCS Runoff	Peak discharge	= 5.148 cfs
Storm frequency	= 1 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 18,745 cuft
Drainage area	= 14.060 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.70 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Offsite Village Area to Ex TOB Pond

Hydrograph type	= SCS Runoff	Peak discharge	= 24.66 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 71,426 cuft
Drainage area	= 14.060 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.70 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Drainage Area Runoff and Time of Concentration

Drainage Area: Onsite flow into Ex. TOB Pond

	PREDEVELOPME	ENT				
Composite Curve Number (CN)					Notes:	
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN ₁	-	Impervious	98	0.00	0.00	
CN ₂	В	Open Space (Good)	61	3.64	221.94	
CN ₃	С	Open Space (Good)	74	1.04	77.04	
CN ₄					0.00	
CN ₅					0.00	
CN ₆					0.00	
CN ₇					0.00	
CN ₈					0.00	
CN ₉					0.00	
CN ₁₀					0.00	
	·		Total	4.68	298.98	
			Со	mposite CN =	64	

Time of Concentration, T _c						
2 yr. Precip. (in.) = 2.73						
				Roughness		Travel Time, T _t
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	Slope (ft/ft)	(min.)
1	Sheet Flow	Grass	100	0.24	0.05	10.7
2	Shallow Conc.	Unpaved	380		0.105	1.2
3	Channel	Grass	240	0.03	0.021	1.2
4						
5						
6						
7						
8						
9						
10						
Total Time of Concentration, T _c (min.) =					13.2	

Runoff				
	1 Yr.	10 Yr.	100 Yr.	
Precipitation (in.), P	2.26	4.06	6.44	
Composite CN	64	64	64	
Storage (in.) S=1000/CN-10	5.63	5.63	5.63	
Initial abstraction (in.), I _a =0.2S	1.13	1.13	1.13	
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.19	1.01	2.58	
Runoff volume (ac-ft), RV = Q/12*A	0.07	0.39	1.01	
Flow rate (cfs), q _{peak} from hydrograph	0.56	6.28		

Hydrograph Number: 9

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Predev Onsite To TOB Pond

Hydrograph type	= SCS Runoff	Peak discharge	= 0.559 cfs
Storm frequency	= 1 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 3,334 cuft
Drainage area	= 4.680 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.20 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Tuesday, 11 / 1 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Predev Onsite To TOB Pond

Hydrograph type	= SCS Runoff	Peak discharge	= 6.280 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 17,630 cuft
Drainage area	= 4.680 ac	Curve number	= 64
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 13.20 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Predev Total To Ex TOB Pond

Hydrograph type Storm frequency	= Combine = 1 vrs	Peak discharge Time to peak	= 63.37 cfs = 726 min
Time interval	$= 2 \min$	Hyd. volume	= 231,959 cuft
Inflow hyds.	= 7, 8, 9	Contrib. drain. area	= 18.740 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Predev Total To Ex TOB Pond

Hydrograph type Storm frequency	= Combine = 10 vrs	Peak discharge Time to peak	= 168.79 cfs = 726 min
Time interval	$= 2 \min$	Hyd. volume	= 661,724 cuft
Inflow hyds.	= 7, 8, 9	Contrib. drain. area	= 18.740 ac

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 6 - Ex. TOB Pond A

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 2018.40 ft

Stage / Storage Table

Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
2018.40	00	0	0
2019.00	40	8	8
2020.00	600	265	273
2021.00	2,410	1,404	1,677
2022.00	5,600	3,894	5,571
2022.10	6,095	585	6,156
2022.20	6,590	634	6,790
2022.30	7,085	683	7,473
2022.40	7,580	733	8,206
2022.50	8,075	783	8,989
2022.60	8,570	832	9,821
2022.70	9,065	882	10,703
2022.80	9,560	931	11,634
2022.90	10,055	981	12,614
2023.00	10,550	1,030	13,644
2024.00	12,758	11,635	25,279
2026.00	26,128	38,092	63,371
2028.00	37,922	63,679	127,050
2030.00	56,606	93,897	220,947
2032.00	83,164	138,907	359,854
2034.00	102,699	185,501	545,355
	Elevation (ft) 2018.40 2019.00 2020.00 2021.00 2022.00 2022.10 2022.20 2022.30 2022.40 2022.50 2022.60 2022.70 2022.80 2022.90 2022.90 2023.00 2024.00 2024.00 2024.00 2024.00 2028.00 2030.00 2032.00 2034.00	Elevation (ft)Contour area (sqft)2018.40002019.00402020.006002021.002,4102022.005,6002022.106,0952022.206,5902022.307,0852022.407,5802022.508,0752022.608,5702022.809,5602022.9010,0552023.0010,5502024.0012,7582024.0026,1282023.0037,9222030.0056,6062032.0083,1642034.00102,699	Elevation (ft)Contour area (sqft)Incr. Storage (cuft)2018.400002019.004082020.006002652021.002,4101,4042022.005,6003,8942022.106,0955852022.206,5906342022.307,0856832022.407,5807332022.508,0757832022.608,5708322022.709,0658822022.809,5609312022.9010,0559812023.0010,5501,0302024.0026,12838,0922028.0037,92263,6792030.0056,60693,8972032.0083,164138,9072034.00102,699185,501

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 21.00	1.70	0.00	0.00	Crest Len (ft)	= 9.42	40.00	0.00	0.00
Span (in)	= 21.00	1.70	0.00	0.00	Crest El. (ft)	= 2022.70	2032.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 2018.30	2018.50	0.00	0.00	Weir Type	= 1	Broad		
Length (ft)	= 125.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	1.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by)	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

olugo /	otorugo / i	Bioonai go i	abio										
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	2018.40	0.00	0.00			0.00	0.00					0.000
0.06	1	2018.46	0.06 ic	0.00			0.00	0.00					0.000
0.12	2	2018.52	0.06 ic	0.00 ic			0.00	0.00					0.001
0.18	2	2018.58	0.06 ic	0.01 ic			0.00	0.00					0.009
0.24	3	2018.64	0.06 ic	0.02 ic			0.00	0.00					0.020
0.30	4	2018.70	0.06 ic	0.03 ic			0.00	0.00					0.027
0.36	5	2018.76	0.06 ic	0.03 ic			0.00	0.00					0.033
0.42	6	2018.82	0.06 ic	0.04 ic			0.00	0.00					0.038
0.48	6	2018.88	0.06 ic	0.04 ic			0.00	0.00					0.042
0.54	7	2018.94	0.06 ic	0.05 ic			0.00	0.00					0.046
0.60	8	2019.00	0.06 ic	0.05 ic			0.00	0.00					0.050
0.70	34	2019.10	0.06 ic	0.06 ic			0.00	0.00					0.055
0.80	61	2019.20	0.06 ic	0.06 ic			0.00	0.00					0.060
0.90	87	2019.30	0.07 ic	0.06 ic			0.00	0.00					0.065
1.00	114	2019.40	0.08 ic	0.07 ic			0.00	0.00					0.069
1.10	140	2019.50	0.08 ic	0.07 ic			0.00	0.00					0.073
1.20	167	2019.60	0.08 ic	0.08 ic			0.00	0.00					0.077
1.30	193	2019.70	0.08 ic	0.08 ic			0.00	0.00					0.081
1.40	220	2019.80	0.08 ic	0.08 ic			0.00	0.00					0.084
1.50	246	2019.90	0.09 ic	0.09 ic			0.00	0.00					0.087
1.60	273	2020.00	0.09 ic	0.09 ic			0.00	0.00					0.091
1.70	413	2020.10	0.09 ic	0.09 ic			0.00	0.00					0.094

Ex. TOB Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.80	554	2020.20	0.10 ic	0.10 ic			0.00	0.00					0.097
1.90	694	2020.30	0.11 ic	0.10 ic			0.00	0.00					0.100
2.00	835	2020.40	0.11 ic	0.10 ic			0.00	0.00					0.103
2.10	975	2020.50	0.11 ic	0.11 ic			0.00	0.00					0.105
2.20	1,115	2020.60	0.11 ic	0.11 ic			0.00	0.00					0.108
2.30	1,256	2020.70	0.12 ic	0.11 ic			0.00	0.00					0.111
2.40	1,396	2020.80	0.12 IC	0.11 IC			0.00	0.00					0.113
2.50	1,537	2020.90	0.12 IC	0.12 IC			0.00	0.00					0.116
2.00	1,077	2021.00	0.1210	0.12 IC			0.00	0.00					0.118
2.70	2,000	2021.10	0.1210	0.12 IC			0.00	0.00					0.121
2.00	2,430	2021.20	0.13 ic	0.12 ic			0.00	0.00					0.125
3.00	3 235	2021.00	0.13 ic	0.13 ic			0.00	0.00					0.120
3.10	3.624	2021.50	0.13 ic	0.13 ic			0.00	0.00					0.130
3.20	4,013	2021.60	0.13 ic	0.13 ic			0.00	0.00					0.132
3.30	4,403	2021.70	0.14 ic	0.13 ic			0.00	0.00					0.134
3.40	4,792	2021.80	0.14 ic	0.14 ic			0.00	0.00					0.136
3.50	5,182	2021.90	0.14 ic	0.14 ic			0.00	0.00					0.138
3.60	5,571	2022.00	0.14 ic	0.14 ic			0.00	0.00					0.141
3.61	5,630	2022.01	0.14 ic	0.14 ic			0.00	0.00					0.141
3.62	5,688	2022.02	0.14 ic	0.14 ic			0.00	0.00					0.141
3.63	5,747	2022.03	0.14 ic	0.14 ic			0.00	0.00					0.141
3.64	5,805	2022.04	0.14 ic	0.14 ic			0.00	0.00					0.141
3.65	5,863	2022.05	0.14 IC	0.14 IC			0.00	0.00					0.142
3.66	5,922	2022.06	0.14 IC	0.14 IC			0.00	0.00					0.142
3.07	5,980	2022.07	0.14 IC	0.14 IC			0.00	0.00					0.142
3.00 3.60	6,039	2022.00	0.14 IC	0.14 IC			0.00	0.00					0.142
3.09	6 156	2022.09	0.14 ic	0.14 ic			0.00	0.00					0.142
3.70	6 219	2022.10	0.14 ic	0.14 ic			0.00	0.00					0.143
3.72	6 283	2022.11	0.14 ic	0.14 ic			0.00	0.00					0.140
3.73	6.346	2022.13	0.14 ic	0.14 ic			0.00	0.00					0.143
3.74	6.409	2022.14	0.14 ic	0.14 ic			0.00	0.00					0.143
3.75	6,473	2022.15	0.14 ic	0.14 ic			0.00	0.00					0.144
3.76	6,536	2022.16	0.14 ic	0.14 ic			0.00	0.00					0.144
3.77	6,600	2022.17	0.14 ic	0.14 ic			0.00	0.00					0.144
3.78	6,663	2022.18	0.14 ic	0.14 ic			0.00	0.00					0.144
3.79	6,727	2022.19	0.14 ic	0.14 ic			0.00	0.00					0.144
3.80	6,790	2022.20	0.14 ic	0.14 ic			0.00	0.00					0.145
3.81	6,858	2022.21	0.14 ic	0.14 ic			0.00	0.00					0.145
3.82	6,927	2022.22	0.14 IC	0.14 IC			0.00	0.00					0.145
3.83	0,995	2022.23	0.15 IC	0.15 IC			0.00	0.00					0.145
3.04	7,003	2022.24	0.1510	0.15 ic			0.00	0.00					0.145
3.86	7,132	2022.23	0.15 ic	0.15 ic			0.00	0.00					0.140
3.87	7 268	2022.20	0.15 ic	0.15 ic			0.00	0.00					0.140
3.88	7 337	2022.21	0.15 ic	0.15 ic			0.00	0.00					0.146
3.89	7.405	2022.29	0.15 ic	0.15 ic			0.00	0.00					0.146
3.90	7,473	2022.30	0.15 ic	0.15 ic			0.00	0.00					0.147
3.91	7,547	2022.31	0.15 ic	0.15 ic			0.00	0.00					0.147
3.92	7,620	2022.32	0.15 ic	0.15 ic			0.00	0.00					0.147
3.93	7,693	2022.33	0.15 ic	0.15 ic			0.00	0.00					0.147
3.94	7,767	2022.34	0.15 ic	0.15 ic			0.00	0.00					0.147
3.95	7,840	2022.35	0.15 ic	0.15 ic			0.00	0.00					0.148
3.96	7,913	2022.36	0.15 ic	0.15 ic			0.00	0.00					0.148
3.97	7,986	2022.37	0.16 ic	0.15 ic			0.00	0.00					0.148
3.98	8,060	2022.38	0.16 ic	0.15 ic			0.00	0.00					0.148
3.99	8,133	2022.39	0.16 IC	0.15 IC			0.00	0.00					0.148
4.00	0,200	2022.40	0.101C	0.15 IC			0.00	0.00					0.140
4.01	0,200	2022.41	0.1010	0.15 ic			0.00	0.00					0.149
4.02	8 44 1	2022.42	0.10 ic	0.15 ic			0.00	0.00					0.149
4.03	8 519	2022.40	0 16 ic	0.15 ic			0.00	0.00					0 149
4.05	8 598	2022 45	0.16 ic	0.15 ic			0.00	0.00					0.149
4.06	8 676	2022 46	0.16 ic	0.15 ic			0.00	0.00					0.150
4.07	8,754	2022.47	0.16 ic	0.15 ic			0.00	0.00					0.150
4.08	8,832	2022.48	0.16 ic	0.15 ic			0.00	0.00					0.150
4.09	8,911	2022.49	0.16 ic	0.15 ic			0.00	0.00					0.150
4.10	8,989	2022.50	0.16 ic	0.15 ic			0.00	0.00					0.150
4.11	9,072	2022.51	0.16 ic	0.15 ic			0.00	0.00					0.151
4.12	9,155	2022.52	0.16 ic	0.15 ic			0.00	0.00					0.151
4.13	9,239	2022.53	0.16 ic	0.15 ic			0.00	0.00					0.151

Ex. TOB Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
4.14	9,322	2022.54	0.16 ic	0.15 ic			0.00	0.00					0.151
4.15	9,405	2022.55	0.16 ic	0.15 ic			0.00	0.00					0.151
4.16	9,488	2022.56	0.16 ic	0.15 ic			0.00	0.00					0.152
4.17	9,571	2022.57	0.16 ic	0.15 ic			0.00	0.00					0.152
4.18	9,655	2022.58	0.16 ic	0.15 ic			0.00	0.00					0.152
4.19	9,738	2022.59	0.16 ic	0.15 ic			0.00	0.00					0.152
4.20	9,821	2022.60	0.16 ic	0.15 ic			0.00	0.00					0.152
4.21	9,909	2022.61	0.16 ic	0.15 ic			0.00	0.00					0.153
4.22	9,997	2022.62	0.16 ic	0.15 ic			0.00	0.00					0.153
4.23	10,085	2022.63	0.16 ic	0.15 ic			0.00	0.00					0.153
4.24	10,174	2022.64	0.16 ic	0.15 ic			0.00	0.00					0.153
4.25	10,262	2022.65	0.16 ic	0.15 ic			0.00	0.00					0.153
4.26	10,350	2022.66	0.16 ic	0.15 ic			0.00	0.00					0.153
4.27	10,438	2022.67	0.16 ic	0.15 ic			0.00	0.00					0.154
4.28	10,526	2022.68	0.16 ic	0.15 ic			0.00	0.00					0.154
4.29	10,614	2022.69	0.16 ic	0.15 ic			0.00	0.00					0.154
4.30	10,703	2022.70	0.16 ic	0.15 ic			0.00	0.00					0.154
4.31	10,796	2022.71	0.19 ic	0.15 ic			0.03	0.00					0.186
4.32	10,889	2022.72	0.25 ic	0.15 ic			0.09	0.00					0.244
4.33	10,982	2022.73	0.32 IC	0.15 IC			0.16	0.00					0.319
4.34	11,075	2022.74	0.43 ic	0.15 IC			0.25	0.00					0.407
4.35	11,168	2022.75	0.53 IC	0.15 IC			0.35	0.00					0.507
4.36	11,261	2022.76	0.64 IC	0.15 IC			0.46	0.00					0.617
4.37	11,354	2022.77	0.7610	0.15 IC			0.58	0.00					0.737
4.38	11,447	2022.78	0.87 IC	0.15 IC			0.71	0.00					0.866
4.39	11,540	2022.79		0.15 IC			0.85	0.00					1.003
4.40	11,034	2022.80	1.18 IC	0.15 IC			0.99	0.00					1.140
4.41	11,732	2022.01	1.30 IC	0.1510			1.10	0.00					1.290
4.42	11,030	2022.02	1.49 IC	0.15 IC			1.31	0.00					1.400
4.43	12,920	2022.03	1.03 10	0.1510			1.47	0.00					1.024
4.44	12,020	2022.04	2.01 ic	0.1510			1.00	0.00					1.797
4.45	12,124	2022.03	2.01 IC	0.15 ic			2.01	0.00					2 161
4.40	12,222	2022.00	2.17 IC	0.15 ic			2.01	0.00					2.101
4.48	12,020	2022.07	2.00 lc	0.15 ic			2.20	0.00					2.502
4 4 9	12,410	2022.80	2.01 ic	0.15 ic			2.40	0.00					2 751
4.50	12.614	2022.90	2.99 ic	0.15 ic			2.81	0.00					2.956
4.51	12,717	2022.91	3.18 ic	0.15 ic			3.02	0.00					3.169
4.52	12,820	2022.92	3.39 ic	0.15 ic			3.24	0.00					3.387
4.53	12,923	2022.93	3.61 ic	0.15 ic			3.46	0.00					3.610
4.54	13,026	2022.94	3.91 ic	0.15 ic			3.69	0.00					3.838
4.55	13,129	2022.95	4.12 ic	0.15 ic			3.92	0.00					4.071
4.56	13,232	2022.96	4.34 ic	0.15 ic			4.16	0.00					4.308
4.57	13,335	2022.97	4.57 ic	0.15 ic			4.40	0.00					4.551
4.58	13,438	2022.98	4.80 ic	0.15 ic			4.65	0.00					4.797
4.59	13,541	2022.99	5.05 ic	0.15 ic			4.90	0.00					5.048
4.60	13,644	2023.00	5.36 ic	0.14 ic			5.16	0.00					5.301
4.70	14,808	2023.10	8.09 ic	0.14 ic			7.94	0.00					8.077
4.80	15,971	2023.20	11.22 ic	0.13 ic			11.09	0.00					11.22
4.90	17,135	2023.30	14.70 ic	0.12 ic			14.58	0.00					14.70
5.00	18,298	2023.40	18.46 oc	0.09 ic			18.37	0.00					18.46
5.10	19,462	2023.50	21.38 oc	0.06 ic			21.32 s	0.00					21.38
5.20	20,625	2023.60	22.11 oc	0.05 IC			22.06 s	0.00					22.11
5.30	21,789	2023.70	22.63 oc	0.04 IC			22.58 s	0.00					22.63
5.40	22,952	2023.80	23.04 oc	0.04 IC			23.00 s	0.00					23.04
5.50	24,116	2023.90	23.40 oc	0.03 IC			23.36 S	0.00					23.40
5.60	25,279	2024.00	23.72.00				23.09 S	0.00					23.72
0.00 6.00	29,000	2024.20	24.29 00	0.02 ic			24.27 S	0.00					24.29
6.20	32,090	2024.40	24.01.00	0.02 ic			24.795	0.00					24.01
6.40	40 516	2024.00	25.30 00	0.02 ic			25.275	0.00					25.29
6.60	40,310	2024.00	26.22 oc	0.02 ic			25.74 S 26 10 s	0.00					26.20
6.80	48 134	2025 20	26 65 00	0.01 ic			26.103 26.64 s	0.00					26.65
7.00	51 944	2025 40	27.08 00	0.01 ic			27 03 s	0.00					27 05
7 20	55 753	2025 60	27 49 00	0.01 ic			27 46 c	0.00					27 47
7.40	59 562	2025 80	27.90 oc	0.01 ic			27.85 s	0.00					27.86
7.60	63.371	2026.00	28.31 oc	0.01 ic			28.27 s	0.00					28.28
7.80	69.739	2026.20	28.70 oc	0.01 ic			28.64 s	0.00					28.65
8.00	76.107	2026.40	29.09 oc	0.01 ic			29.03 s	0.00					29.04
8.20	82,475	2026.60	29.47 oc	0.01 ic			29.42 s	0.00					29.42
8.40	88,843	2026.80	29.85 oc	0.01 ic			29.80 s	0.00					29.81
8.60	95,210	2027.00	30.22 oc	0.01 ic			30.18 s	0.00					30.19

Ex. TOB Pond Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
8.80	101,578	2027.20	30.59 oc	0.01 ic			30.50 s	0.00					30.51
9.00	107,946	2027.40	30.96 oc	0.01 ic			30.90 s	0.00					30.91
9.20	114,314	2027.60	31.32 oc	0.01 ic			31.17 s	0.00					31.18
9.40	120,682	2027.80	31.67 oc	0.01 ic			31.62 s	0.00					31.63
9.60	127,050	2028.00	32.02 oc	0.01 ic			31.96 s	0.00					31.97
9.80	136,440	2028.20	32.37 oc	0.01 ic			32.19 s	0.00					32.19
10.00	145,829	2028.40	32.71 oc	0.01 ic			32.46 s	0.00					32.47
10.20	155,219	2028.60	33.05 oc	0.01 ic			32.96 s	0.00					32.96
10.40	164,609	2028.80	33.39 oc	0.00 ic			33.30 s	0.00					33.30
10.60	173,998	2029.00	33.72 oc	0.00 ic			33.53 s	0.00					33.53
10.80	183,388	2029.20	34.05 oc	0.00 ic			34.01 s	0.00					34.01
11.00	192,778	2029.40	34.38 oc	0.00 ic			34.12 s	0.00					34.13
11.20	202,167	2029.60	34.70 oc	0.00 ic			34.44 s	0.00					34.44
11.40	211,557	2029.80	35.02 oc	0.00 ic			34.67 s	0.00					34.68
11.60	220,947	2030.00	35.34 oc	0.00 ic			34.87 s	0.00					34.88
11.80	234,838	2030.20	35.65 oc	0.00 ic			35.43 s	0.00					35.44
12.00	248,728	2030.40	35.96 oc	0.00 ic			35.96 s	0.00					35.96
12.20	262,619	2030.60	36.27 oc	0.00 ic			35.86 s	0.00					35.87
12.40	276,510	2030.80	36.58 oc	0.00 ic			36.27 s	0.00					36.27
12.60	290,400	2031.00	36.88 oc	0.00 ic			36.63 s	0.00					36.63
12.80	304,291	2031.20	37.18 oc	0.00 ic			37.10 s	0.00					37.10
13.00	318,182	2031.40	37.48 oc	0.00 ic			37.37 s	0.00					37.37
13.20	332,073	2031.60	37.78 oc	0.00 ic			37.57 s	0.00					37.58
13.40	345,963	2031.80	38.07 oc	0.00 ic			37.73 s	0.00					37.73
13.60	359,854	2032.00	38.37 oc	0.00 ic			37.71 s	0.00					37.71
13.80	378,404	2032.20	38.66 oc	0.00 ic			38.61 s	9.30					47.91
14.00	396,954	2032.40	38.94 oc	0.00 ic			38.82 s	26.30					65.12
14.20	415,504	2032.60	39.23 oc	0.00 ic			38.74 s	48.32					87.06
14.40	434,055	2032.80	39.51 oc	0.00 ic			38.58 s	74.39					112.97
14.60	452,605	2033.00	39.79 oc	0.00 ic			39.43 s	103.96					143.40
14.80	471,155	2033.20	40.07 oc	0.00 ic			39.17 s	136.66					175.83
15.00	489,705	2033.40	40.35 oc	0.00 ic			40.00 s	172.21					212.22
15.20	508,255	2033.60	40.63 oc	0.00 ic			39.60 s	210.40					250.01
15.40	526,805	2033.80	40.90 oc	0.00 ic			40.42 s	251.06					291.49
15.60	545.355	2034.00	41.17 oc	0.00 ic			41.07 s	294.16					335.23

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Predev Ex.TOB Pond Out

Hydrograph type	= Reservoir	Peak discharge	= 27.06 cfs
Storm frequency	= 1 yrs	Time to peak	= 740 min
Time interval	= 2 min	Hyd. volume	= 231,958 cuft
Inflow hyd. No.	= 10 - Predev Total To E	x TOB Roa d. Elevation	= 2025.41 ft
Reservoir name	= Ex. TOB Pond	Max. Storage	= 52,034 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Predev Ex.TOB Pond Out

Hydrograph type	= Reservoir	Peak discharge	= 35.75 cfs
Storm frequency	= 10 yrs	Time to peak	= 752 min
Time interval	= 2 min	Hyd. volume	= 661,723 cuft
Inflow hyd. No.	= 10 - Predev Total To E	x TOB Rolax . Elevation	= 2030.32 ft
Reservoir name	= Ex. TOB Pond	Max. Storage	= 243,216 cuft

Drainage Area Runoff and Time of Concentration

Drainage Area: To 460 south culvert crossing (excludes Union area) PREDEVELOPMENT

	C		Notes:			
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN ₁	-	Impervious	98	14.92	1461.92	
CN ₂	В	Managed Turf	61	0.53	32.46	
CN ₃	C	Managed Turf	74	5.55	410.68	
CN_4	В	Brush (Good)	48	0.72	34.62	
CN ₅	С	Brush (Good)	65	1.66	107.68	
CN ₆					0.00	
CN ₇					0.00	
CN ₈					0.00	
CN ₉					0.00	
CN ₁₀					0.00	
		2047.36				
Composite CN =					88	

	Time of Concentration, T _c									
		2 yr. Precip. (in.) =	2.73							
				Roughness		Travel Time, T _t				
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	Slope (ft/ft)	(min.)				
1	Sheet Flow	Paved	100	0.011	0.030	1.1				
2	Shallow Conc.	Paved	131		0.023	0.7				
3	Channel	Curb	101	0.011	0.005	0.4				
4	Channel	Pipe 30"	394	0.011	0.010	0.9				
5	Channel	Grass	865	0.03	0.044	3.1				
6										
7										
8										
9										
10										
Total Time of Concentration, T _c (min.) =										

Runoff			
	1 Yr.	10 Yr.	100 Yr.
Precipitation (in.), P	2.26	4.06	6.44
Composite CN	88	88	88
Storage (in.) S=1000/CN-10	1.36	1.36	1.36
Initial abstraction (in.), $I_a=0.2S$	0.27	0.27	0.27
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	1.18	2.78	5.05
Runoff volume (ac-ft), RV = Q/12*A	2.30	5.42	9.84
Flow rate (cfs), q _{peak} from hydrograph	46.38	106.50	
Libratura ana la Niversia an	10		

Hydrograph Number: 13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

To 460 South Culvert (excluding Union)

Hydrograph type =	SCS Runoff	Peak discharge	= 46.38 cfs
Storm frequency =	= 1 yrs	Time to peak	= 716 min
Time interval =	= 2 min	Hyd. volume	= 93,772 cuft
Drainage area =	= 23.380 ac	Curve number	= 88
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 6.20 min
Total precip. =	= 2.26 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 13

To 460 South Culvert (excluding Union)

Hydrograph type	= SCS Runoff	Peak discharge	= 106.50 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 221,560 cuft
Drainage area	= 23.380 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.20 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

WORKSHEET FOR SCS HYDROLOGIC PARAMETERS

	Existing	Project: Sturbridge Apartments
Site Conditions:	X Proposed	Subarea Number: 2b - No Detention - Bypass
	Existing	By: Justin Brown
Off-Site Land Use:	X Proposed	Date: 4/13/2020

RUNOFF CURVE NUMBER

Soil Group	Land Use or Zoning		Area (acres)	RCN	RCN x Area	
В	On-Site	Impervious	0.43	98	42.14	
В	On-Site	Open Space	1.14	61	69.54	
С	On-Site	Impervious	0.00	98	0	
С	On-Site	Open Space	0.08	74	5.92	
					<u></u>	
					-	

Total Area

0.003 sq. mi

Weighted RCN =

71

Notes:

1.65

ac

Time of Concentration = 18.39 minutes (See Attached)

TR 55 Worksheet: Time of Concentration (Tc)	PROJECT	PROJECT: TNHSE19001			PN: (Post-DEVELOPMENT: POI#2			
	1	2	3	4	5	6	6	
Sheet Flow								
Surface description (Table 3-1)	Dense Grass							
Manning's roughness coeff., n (Table 3-1)	0.24					1		
Flow length, L (total L < 100 ft) ft	100.00							
Two-year 24-hour rainfall, P2 in	2.74							
Land slope, S ft/ft	0.0300							
$T_t = (0.007 (nL)^{0.8}) / (P_2^{0.5} s^{0.4}) \dots hr$	0.22	0.00	0.00	0.00	0.00	0.00	0.00	
Shallow Concetrated Flow								
Surface description (paved=1 or unpaved=0)	0	0	0	0	0	0	0	
Flow length, L ft	223.0	0.0	0.0	0.0	0.0	0.0	0.0	
Watercourse slope, S ft/ft	0.0540	0.0100	0.0100	0.0100	0.0100	0.0100	0.0100	
Average velocity, V ft/s	-		-		-			
Unpaved V = $16.1345 (s)^{0.5}$	3.75	1.61	1.61	1.61	1.61	1.61	1.61	
Paved $V = 20.3282 (s)^{0.5}$								
T _t = L /3600Vhr	0.02	0.00	0.00	0.00	0.00	0.00	0.00	
Channel Flow	CHANNEL						3	
Cross sectional flow area, A ft ²	3.00	1.20	3.10					
Wetted perimeter, Pw ft	6.00	4.00	6.28	0				
Hydraulic radius, r = A/Pwft	0.50	0.30	0.49	0.00	0.00	0.00	0.00	
Channel slope, s ft/ft	0.050	0.033	0.010	1		i		
Manning's roughness coefficient, n	0.011	0.035	0.069	0.013	0.013	0.013	0.013	
Velocity, V=(1.49/n)R ^{2/3} s ^{1/2} ft	19.08	3.47	1.35	0.00	0.00	0.00	0.00	
Flow length, L ft	227.0	223.0	244.0					
T _t = L/3600Vhr	0.003	0.018	0.050	0.000	0.000	0.000	0.000	
Sub Basin Tc = $T_{sheetflow} + T_{shallow concentrated} + T_{channel} =$	0.24 hr	0.02 hr	0.05 hr	0.00 hr	0.00 hr	0.00 hr	0.00 hr	
Sub Basin Tc = $T_{sheetflow} + T_{shallow concentrated} + T_{channel} =$	14.30 min	1.07 min	3.02 min	0.00 min	0.00 min	0.00 min	0.00 min	1

18.39 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

Union Bypass To 460 S Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 0.535 cfs
Storm frequency	= 1 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 2,256 cuft
Drainage area	= 1.650 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.40 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

Union Bypass To 460 S Culvert

Hydrograph type	= SCS Runoff	Peak discharge	= 2.647 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 8,597 cuft
Drainage area	= 1.650 ac	Curve number	= 71
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.40 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

WORKSHEET FOR SCS HYDROLOGIC PARAMETERS

	1.00	Existing	Project:	Sturbridge Apartments			
Site Conditions:	X	Proposed	Subarea Number: 2a Detention				
		Existing	By:	Justin Brown			
Off-Site Land Use:	X	Proposed	Date:	4/13/2020			

RUNOFF CURVE NUMBER

Soil Group	Land Use or Zoning		Area (acres)	RCN	RCN x Area
В	On-Site	Impervious	2.12	98	207.76
В	On-Site	Open Space	0.13	61	7.93
С	On-Site	Impervious	1.31	98	128.38
С	On-Site Open Space	Open Space	0.16	74	11.84
	-				

Total Area

0.006 sq. mi

Weighted RCN =

96

Notes:

3.72

ac

Time of Concentration = 5 minutes (Assumed)

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Union South Basin Inflow

Hydrograph type	= SCS Runoff	Peak discharge	= 10.62 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 23,128 cuft
Drainage area	= 3.720 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Friday, 04 / 29 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Union South Basin Inflow

Hydrograph type	= SCS Runoff	Peak discharge	= 20.05 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 45,569 cuft
Drainage area	= 3.720 ac	Curve number	= 96
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 11 - Union South Underground Det.

Pond Data

UG Chambers -Invert elev. = 2052.00 ft, Rise x Span = 4.00×4.00 ft, Barrel Len = 140.00 ft, No. Barrels = 4, Slope = 0.50%, Headers = Yes **Encasement -**Invert elev. = 2051.50 ft, Width = 6.50 ft, Height = 5.50 ft, Voids = 40.00%

Stage / Storage Table

Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	2051.50	n/a	0	0
0.62	2052.12	n/a	462	462
1.24	2052.74	n/a	1,212	1,674
1.86	2053.36	n/a	1,655	3,329
2.48	2053.98	n/a	1,832	5,161
3.10	2054.60	n/a	1,888	7,049
3.72	2055.22	n/a	1,850	8,899
4.34	2055.84	n/a	1,703	10,602
4.96	2056.46	n/a	1,328	11,930
5.58	2057.08	n/a	1,009	12,939
6.20	2057.70	n/a	987	13,925

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	8.50	4.88	0.00	Crest Len (ft)	= 18.85	0.73	0.00	0.00
Span (in)	= 24.00	7.00	72.00	0.00	Crest El. (ft)	= 2058.71	2056.10	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 2051.50	2051.50	2054.55	0.00	Weir Type	= 1	Rect		
Length (ft)	= 25.00	0.50	0.50	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

-			·										
Stage ft	Storage cuft	Elevation ft	CIV A cfs	CIV B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	rotal cfs
0.00	0	2051.50	0.00	0.00	0.00		0.00	0.00					0.000
0.06	46	2051.56	0.02 ic	0.02 ic	0.00		0.00	0.00					0.018
0.12	92	2051.62	0.06 ic	0.06 ic	0.00		0.00	0.00					0.059
0.19	139	2051.69	0.12 ic	0.12 ic	0.00		0.00	0.00					0.119
0.25	185	2051.75	0.20 ic	0.19 ic	0.00		0.00	0.00					0.191
0.31	231	2051.81	0.29 ic	0.28 ic	0.00		0.00	0.00					0.276
0.37	277	2051.87	0.38 ic	0.38 ic	0.00		0.00	0.00					0.378
0.43	324	2051.93	0.48 ic	0.48 ic	0.00		0.00	0.00					0.483
0.50	370	2052.00	0.60 ic	0.60 ic	0.00		0.00	0.00					0.602
0.56	416	2052.06	0.73 ic	0.73 ic	0.00		0.00	0.00					0.734
0.62	462	2052.12	0.89 ic	0.86 ic	0.00		0.00	0.00					0.863
0.68	584	2052.18	1.01 ic	1.01 ic	0.00		0.00	0.00					1.010
0.74	705	2052.24	1.13 ic	1.12 ic	0.00		0.00	0.00					1.124
0.81	826	2052.31	1.20 ic	1.20 ic	0.00		0.00	0.00					1.201
0.87	947	2052.37	1.27 ic	1.27 ic	0.00		0.00	0.00					1.274
0.93	1,068	2052.43	1.35 ic	1.35 ic	0.00		0.00	0.00					1.346
0.99	1,189	2052.49	1.42 ic	1.42 ic	0.00		0.00	0.00					1.418
1.05	1,311	2052.55	1.49 ic	1.49 ic	0.00		0.00	0.00					1.489
1.12	1,432	2052.62	1.56 ic	1.56 ic	0.00		0.00	0.00					1.556
1.18	1,553	2052.68	1.64 ic	1.62 ic	0.00		0.00	0.00					1.616
1.24	1,674	2052.74	1.73 ic	1.67 ic	0.00		0.00	0.00					1.674
1.30	1,840	2052.80	1.74 ic	1.74 ic	0.00		0.00	0.00					1.738
1.36	2,005	2052.86	1.81 ic	1.80 ic	0.00		0.00	0.00					1.799
1.43	2,171	2052.93	1.90 ic	1.85 ic	0.00		0.00	0.00					1.851
1.49	2,336	2052.99	1.91 ic	1.91 ic	0.00		0.00	0.00					1.910
1.55	2,502	2053.05	1.99 ic	1.97 ic	0.00		0.00	0.00					1.965
1.61	2.667	2053.11	2.01 ic	2.01 ic	0.00		0.00	0.00					2.014
1.67	2.833	2053.17	2.08 ic	2.07 ic	0.00		0.00	0.00					2.073
1.74	2,998	2053.24	2.18 ic	2.12 ic	0.00		0.00	0.00					2.118
1.80	3,164	2053.30	2.18 ic	2.18 ic	0.00		0.00	0.00					2.175
1.86	3.329	2053.36	2.28 ic	2.22 ic	0.00		0.00	0.00					2.218
1.92	3 513	2053 42	2 28 ic	2 27 ic	0.00		0.00	0.00					2 273
	0,0.0				0.00		0.00	0.00					0

Union South Underground Det. Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.98	3,696	2053.48	2.38 ic	2.31 ic	0.00		0.00	0.00					2.313
2.05	3,879	2053.55	2.38 ic	2.37 ic	0.00		0.00	0.00					2.366
2.11	4,062	2053.61	2.41 ic	2.41 ic	0.00		0.00	0.00					2.405
2.17	4,245	2053.67	2.48 ic	2.46 ic	0.00		0.00	0.00					2.456
2.23	4,428	2053.73	2.50 ic	2.50 ic	0.00		0.00	0.00					2.498
2.29	4,612	2053.79	2.59 ic	2.54 ic	0.00		0.00	0.00					2.542
2.36	4,795	2053.86	2.59 ic	2.59 ic	0.00		0.00	0.00					2.589
2.42	4,978	2053.92	2.70 ic	2.63 ic	0.00		0.00	0.00					2.626
2.48	5,161	2053.98	2.70 ic	2.67 ic	0.00		0.00	0.00					2.672
2.54	5,350	2054.04	2.71 ic	2.71 ic	0.00		0.00	0.00					2.712
2.60	5,539	2054.10	2.81 ic	2.75 ic	0.00		0.00	0.00					2.752
2.67	5,728	2054.17	2.81 IC	2.80 ic	0.00		0.00	0.00					2.796
2.73	5,916	2054.23	2.83 IC	2.83 IC	0.00		0.00	0.00					2.831
2.79	6,105	2054.29	2.92 ic	2.87 IC	0.00		0.00	0.00					2.8/2
2.85	6,294	2054.35	2.92 ic	2.91 IC	0.00		0.00	0.00					2.915
2.91	6,483	2054.41	2.95 IC	2.95 IC	0.00		0.00	0.00					2.947
2.98	6,672	2054.48	3.03 IC	2.99 IC	0.00		0.00	0.00					2.988
3.04	0,800	2054.54	3.03 IC	3.03 IC	0.00		0.00	0.00					3.028
3.10	7,049	2054.60	3.32 OC	3.04 IC	0.23 IC		0.00	0.00					3.208
3.10	7,234	2004.00	3.60 00	3.03 IC			0.00	0.00					3.790
3.22	7,419	2054.72	4.49 OC	3.00 IC	1.48 IC		0.00	0.00					4.48Z
3.29	7,604	2054.79	5.38 OC	2.95 IC	2.34 IC		0.00	0.00					5.289
3.35	7,789	2054.85	0.24 OC	2.89 IC	3.32 IC		0.00	0.00					0.210
3.41	7,974	2054.91	7.28 OC	2.81 IC	4.41 IC		0.00	0.00					1.221
3.47	8,159	2054.97	8.20 OC	2.72 IC	5.50 IC		0.00	0.00					0.21/
3.33	0,344	2000.00	0.9100	2.00 IC	0.23 IC		0.00	0.00					0.003
3.00	0,029	2000.10	9.42 00	2.54 IC	0.00 IC		0.00	0.00					9.423
3.00	0,714	2055.10	10.01.00	2.55 IC	7.40 IC		0.00	0.00					10.01
3.1Z	0,099	2000.22	10.56 00	2.50 IC	0.03 IC		0.00	0.00					10.00
3.10 201	9,009	2000.20	11.12.00	2.00 10	0.04 IC		0.00	0.00					11.12
3.04	9,240	2055.34	12 11 00	2.00 IC	9.03 IC		0.00	0.00					12 11
3.91	9,410	2055.41	12.11.00	2.02 IC	9.49 IC		0.00	0.00					12.11
1.03	9,500	2055.47	12.00 00	2.00 IC	9.93 ic		0.00	0.00					12.00
4.00	0 021	2055.55	13.45 oc	2.07 iC	10.33 ic		0.00	0.00					13.02
4.05	10 091	2055.55	13.45 OC	2.03 iC	11 15 ic		0.00	0.00					13.45
4.10	10,001	2055.00	14 26 oc	2.71 ic	11.10 ic		0.00	0.00					14 26
4.22	10,202	2055 78	14.65 oc	2.70 ic	11.80 ic		0.00	0.00					14.20
4.34	10,402	2055.84	15.03 oc	2.70 ic	12 25 ic		0.00	0.00					15.02
4 40	10,002	2055.90	15.39 oc	2.80 ic	12.59 ic		0.00	0.00					15.39
4 46	10,868	2055.96	15 75 oc	2.82 ic	12.00 lc		0.00	0.00					15 75
4.53	11.001	2056.03	16.10 oc	2.84 ic	13.25 ic		0.00	0.00					16.10
4.59	11,133	2056.09	16.44 oc	2.86 ic	13.57 ic		0.00	0.00					16.44
4.65	11,266	2056.15	16.79 oc	2.88 ic	13.88 ic		0.00	0.03					16.79
4.71	11,399	2056.21	17.18 oc	2.90 ic	14.19 ic		0.00	0.09					17.18
4.77	11,532	2056.27	17.58 oc	2.91 ic	14.49 ic		0.00	0.18					17.58
4.84	11,664	2056.34	17.99 oc	2.93 ic	14.78 ic		0.00	0.28					17.99
4.90	11,797	2056.40	18.40 oc	2.94 ic	15.07 ic		0.00	0.40					18.40
4.96	11,930	2056.46	18.82 oc	2.95 ic	15.35 ic		0.00	0.52					18.82
5.02	12,031	2056.52	19.25 oc	2.96 ic	15.62 ic		0.00	0.67					19.25
5.08	12,132	2056.58	19.69 oc	2.97 ic	15.90 ic		0.00	0.82					19.69
5.15	12,233	2056.65	20.12 oc	2.98 ic	16.16 ic		0.00	0.98					20.12
5.21	12,333	2056.71	20.57 oc	2.99 ic	16.43 ic		0.00	1.15					20.56
5.27	12,434	2056.77	21.01 oc	2.99 ic	16.68 ic		0.00	1.33					21.01
5.33	12,535	2056.83	21.46 oc	3.00 ic	16.94 ic		0.00	1.52					21.46
5.39	12,636	2056.89	21.91 oc	3.00 ic	17.19 ic		0.00	1.72					21.91
5.46	12,737	2056.96	22.36 ic	3.00 ic	17.44 ic		0.00	1.93					22.36
5.52	12,838	2057.02	22.76 ic	2.99 ic	17.64 ic		0.00	2.14					22.76
5.58	12,939	2057.08	23.02 ic	2.99 ic	17.67 ic		0.00	2.36					23.02
5.64	13,037	2057.14	23.29 ic	3.00 ic	17.71 ic		0.00	2.59					23.29
5.70	13,136	2057.20	23.56 ic	3.00 ic	17.73 ic		0.00	2.82					23.56
5.77	13,235	2057.27	23.83 ic	3.01 ic	17.76 ic		0.00	3.06					23.83
5.83	13,333	2057.33	24.10 ic	3.01 ic	17.78 ic		0.00	3.31					24.10
5.89	13,432	2057.39	24.37 ic	3.01 ic	17.79 ic		0.00	3.56					24.37
5.95	13,531	2057.45	24.64 ic	3.02 ic	17.81 ic		0.00	3.82					24.64
6.01	13,629	2057.51	24.92 ic	3.02 ic	17.82 ic		0.00	4.09					24.92
6.08	13,728	2057.58	25.20 ic	3.02 ic	17.82 ic		0.00	4.36					25.20
6.14	13,827	2057.64	25.48 ic	3.02 ic	17.82 ic		0.00	4.64					25.48
6.20	13,925	2057.70	25.76 ic	3.02 ic	17.82 ic		0.00	4.92					25.75

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 16

Union S. Basin Out

Hydrograph type =	= Reservoir	Peak discharge	= 3.004 cfs
Storm frequency =	= 1 yrs	Time to peak	= 724 min
Time interval =	= 2 min	Hyd. volume	= 23,126 cuft
Inflow hyd. No. =	= 15 - Union South Basin Inflow	Max. Elevation	= 2054.50 ft
Reservoir name =	Union South Underground Det	tMax. Storage	= 6,746 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 16

Union S. Basin Out

Hydrograph type	= Reservoir	Peak discharge	= 14.35 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 45,566 cuft
Inflow hyd. No.	= 15 - Union South Basin Inflow	Max. Elevation	= 2055.73 ft
Reservoir name	= Union South Underground Det	tMax. Storage	= 10,299 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

Total To 460 South Culvert

Hydrograph type	= Combine	Peak discharge	= 49.07 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 119,154 cuft
Inflow hyds.	= 13, 14, 16	Contrib. drain. area	= 25.030 ac

Friday, 04 / 29 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

Total To 460 South Culvert

Hydrograph type =	- Combine	Peak discharge	= 119.01 cfs
Storm frequency =	= 10 yrs	Time to peak	= 716 min
Time interval =	= 2 min	Hyd. volume	= 275,723 cuft
Inflow hyds.	= 13, 14, 16	Contrib. drain. area	= 25.030 ac

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 2038.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	2038.00	00	0	0
2.00	2040.00	4,884	4,884	4,884
4.00	2042.00	7,175	12,059	16,943
6.00	2044.00	9,534	16,709	33,652
8.00	2046.00	12,012	21,546	55,198
10.00	2048.00	14,742	26,754	81,952
12.00	2050.00	17,943	32,685	114,637

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 36.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 36.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 2038.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 203.10	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.92	0.00	0.00	n/a	-				
N-Value	= .024	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00	. ,		

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Stage /	Storage /	Discharge 1	Table		, -							,	.9 (-).
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	2038.00	0.00										0.000
0.20	488	2038.20	0.31 ic										0.309
0.40	977	2038.40	1.21 ic										1.207
0.60	1,465	2038.60	2.66 ic										2.662
0.80	1,954	2038.80	4.61 ic										4.610
1.00	2,442	2039.00	7.03 ic										7.030
1.20	2,930	2039.20	9.85 ic										9.852
1.40	3,419	2039.40	13.04 ic										13.04
1.60	3,907	2039.60	16.53 ic										16.53
1.80	4,396	2039.80	20.25 ic										20.25
2.00	4.884	2040.00	24.12 ic										24.12
2.20	6,090	2040.20	28.08 ic										28.08
2.40	7,296	2040.40	31.98 ic										31.98
2.60	8.502	2040.60	35.75 ic										35.75
2.80	9,708	2040.80	39.12 ic										39.12
3.00	10,914	2041.00	41.68 ic										41.68
3.20	12,119	2041.20	44.37 ic										44.37
3.40	13,325	2041.40	46.91 ic										46.91
3.60	14,531	2041.60	49.32 ic										49.32
3.80	15,737	2041.80	51.61 ic										51.61
4.00	16,943	2042.00	53.81 ic										53.81
4.20	18,614	2042.20	55.92 ic										55.92
4.40	20,285	2042.40	57.95 ic										57.95
4.60	21,956	2042.60	59.92 ic										59.92
4.80	23,627	2042.80	61.82 ic										61.82
5.00	25,298	2043.00	62.77 oc										62.77
5.20	26,968	2043.20	63.56 oc										63.56
5.40	28,639	2043.40	64.33 oc										64.33
5.60	30,310	2043.60	65.10 oc										65.10
5.80	31,981	2043.80	65.86 oc										65.86
6.00	33,652	2044.00	66.61 oc										66.61
6.20	35.807	2044.20	67.35 oc										67.35
6.40	37,961	2044.40	68.09 oc										68.09
6.60	40,116	2044.60	68.81 oc										68.81
6.80	42,270	2044.80	69.53 oc										69.53
7 00	44 425	2045 00	70 24 00										70 24

Friday, 04 / 29 / 2022

460 South Culvert HW Storage Stage / Storage / Discharge Table

•	•	•											
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
7.20	46,580	2045.20	70.95 oc										70.95
7.40	48,734	2045.40	71.64 oc										71.64
7.60	50,889	2045.60	72.33 oc										72.33
7.80	53,043	2045.80	73.02 oc										73.02
8.00	55,198	2046.00	73.69 oc										73.69
8.20	57,873	2046.20	74.36 oc										74.36
8.40	60,549	2046.40	75.03 oc										75.03
8.60	63,224	2046.60	75.69 oc										75.69
8.80	65,900	2046.80	76.34 oc										76.34
9.00	68,575	2047.00	76.99 oc										76.99
9.20	71,250	2047.20	77.63 oc										77.63
9.40	73,926	2047.40	78.27 oc										78.27
9.60	76,601	2047.60	78.90 oc										78.90
9.80	79,277	2047.80	79.53 oc										79.53
10.00	81,952	2048.00	80.15 oc										80.15
10.20	85,221	2048.20	80.77 oc										80.77
10.40	88,489	2048.40	81.38 oc										81.38
10.60	91,758	2048.60	81.99 oc										81.99
10.80	95,026	2048.80	82.60 oc										82.60
11.00	98,295	2049.00	83.19 oc										83.19
11.20	101,563	2049.20	83.79 oc										83.79
11.40	104,832	2049.40	84.38 oc										84.38
11.60	108,100	2049.60	84.97 oc										84.97
11.80	111,369	2049.80	85.55 oc										85.55
12.00	114,637	2050.00	86.13 oc										86.13

...End

95

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 18

460 South Culvert Out

Hydrograph type	= Reservoir	Peak discharge	= 40.17 cfs
Time interval	$= 2 \min$	Hyd. volume	= 119,153 cuft
Inflow hyd. No. Reservoir name	= 17 - Total To 460 South Culve= 460 South Culvert HW Storag	enMax. Elevation eMax. Storage	= 2040.88 ft = 10,199 cuft

Storage Indication method used.

Friday, 04 / 29 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 18

460 South Culvert Out

Hydrograph type =	= Reservoir	Peak discharge	= 68.09 cfs
Storm frequency =	= 10 yrs	Time to peak	= 722 min
Time interval :	= 2 min	Hyd. volume	= 275,721 cuft
Inflow hyd. No.	= 17 - Total To 460 South Culve	nMax. Elevation	= 2044.40 ft
Reservoir name	= 460 South Culvert HW Storage	eMax. Storage	= 37,977 cuft

- VARIABLE WIDTH PRIVATE STORM WATER MANAGEMENT EASEMENT

60 FEET HEET NUMBER 1 OF 1

The proji repr with	GAY AND NEEL, INC. ■ BORNEDINA + UND THERE, INC.	ue contraction of the contractio	Phone: (540) 381-6011 Fax: (540) 381-2773 Fax: (540) 381-2773 Fax: fish (540) 281-2773	www.gayandheel.com
	POST-DEVELOPMENT DA MAP		THE FARM	TOWN OF BLACKSBURG, VIRGINIA
PRO	VISIONS D. CO	MMENTS	5 D	ATE
PM PIC	MATT P. TO	KIMZEY, PE		_
ESIGN	STC, ADS, N	IBL		-
ISS	UE DATE			
GN		2/01/202	21	
	. 300 110.	1108.7		
SHI P	EET TITLE OST-DE	VELOP MAP	MENT	DA

30	0	30	
	GRAPHIC	C SCALE	F
	CONTOUR INTE	RVAL = 1 FT.	

Drainage Area Runoff and Time of Concentration

Precipitation Data							
Return							
Frequency	P (in.)						
1 Yr.	2.26						
2 Yr.	2.73						
10 Yr.	4.06						
100 Yr.	6.44						

Drainage Area:	"The Farm" Dr	ainage /	Areas									
	Comr	posite Cr	urve Number ((CN)	l		٦	Time of Con	centratio	n, T _c		
			,		l			Τ				Travel
		'		1 1	l	Flow		Land	Length	Roughness	Slope	Time, T _t
		CN	Area (Ac.)	CN*A		Segment	Flow Regime	Cover	(ft)	Coeff., n	(ft/ft)	(min.)
	CN ₁	79	0.55	43.45	l	1						
	CN ₂	75	0.77	57.75	l	2						
	CN ₃			0.00	l	3						
	CN ₄	1		0.00	l	4						
	CN ₅	1		0.00	l	5						
Undetained	Total	-	1.32	101.20	l	6	Other Tt					8.6
areas total		Co	mposite CN =	77	l			Total Tim	ne of Con	centration, T	_c (min.)	8.6
				Kunon	1 Vr	10 Vr	100 Vr	-				
		Com	nosite (N		1 Yr. 77	77	77					
	Stc	vrage (in) S=1000/CN-	10	2,99	2,99	2,99	4				
		al abstra	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	125	0.60	0.60	0.60	-				
	Bunoff de	n ubstra	$\frac{1}{1000} - (0.025)^2/$.25 [/p \±S]	0.00	1 86	2.97	-				
	Runoff		$\frac{1}{(200 \text{ ft}) \text{ RV} = 0}$	(P-1a/T-3) /10*A	0.35	1.00 0.20	0.43	-				
	Flow rat	volume	$\frac{ac-n}{r}$, $nv - w$	/12°A	1.20	3.89	0.45	Hydrogra	nh No.:	Contributes	to 21	
	Notes	See "Th	peak nonnyan	hy others (N	1=D41 post	weighted C	N CN2=DA3 pos	t weighted (см			
	Notes.			by others. ert.	<u>1-0/11 post</u>	Weighter e	<u>N, CN2-DN3 p03</u>	t Weighten (
	Com	posite C	urve Number ((CN)		1		Time of Con	centratio	n, T _c		
					l			Τ				Travel
		'		1	l	Flow		Land	Length	Roughness	Slope	Time, T _t
		CN	Area (Ac.)	CN*A		Segment	Flow Regime	Cover	(ft)	Coeff., n	(ft/ft)	(min.)
	CN ₁	91	2.67	242.97		1						
	CN ₂			0.00	l	2						
	CN ₃			0.00	l	3						
	CN ₄			0.00	l	4						
	CN ₅			0.00	l	5						
Area to "The	Total	-	2.67	242.97		6	Other Tt					5.8
Farm" detention		Co	mposite CN =	91	l			Total Tim	ne of Con	centration, T	_c (min.)	5.8
				Runoff				Г				
1				1	1 Yr.	10 Yr.	100 Yr.	-				
1		VR	RM CN*		91	91	91	*If differer	nt from C	omposite CN	, runoff	reduction
1	Sto	orage (in	.) S=1000/CN-?	10	0.99	0.99	0.99	BMPs are	utilized	·		
	Initia	al abstra	ction (in.), I _a =C	J.2S	0.20	0.20	0.20	1				
	Runoff de	epth (in.)), Q=(P-0.2S) ² /	[(P-I _a)+S]	1.39	3.07	5.39	1				
	Runoff	volume	(ac-ft), RV = Q	/12*A	0.31	0.68	1.20	1				
	Flow rat	:e (cfs), c	a _{peak} from hydr	ograph	6.19	13.12		Hydrogra	aph No.:	19		
	Notes:	See "Th	ne Farm" calcs	by others. CN	1=DA3 post	weighted C	.N	_ · -			•	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

The Farm Basin Inflow

Hydrograph type	= SCS Runoff	Peak discharge	= 6.187 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 12,664 cuft
Drainage area	= 2.670 ac	Curve number	= 91
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.80 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Friday, 04 / 29 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

The Farm Basin Inflow

Hydrograph type	= SCS Runoff	Peak discharge	= 13.12 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 27,939 cuft
Drainage area	= 2.670 ac	Curve number	= 91
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.80 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond Data

Pond storage is based on user-defined values.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	2080.85	n/a	0	0
0.05	2080.90	n/a	126	126
0.24	2081.09	n/a	428	554
0.41	2081.26	n/a	406	960
0.69	2081.54	n/a	632	1,592
0.96	2081.81	n/a	1,180	2,772
1.53	2082.38	n/a	2,806	5,578
2.21	2083.06	n/a	3,199	8,777
2.63	2083.48	n/a	1,937	10,714
2.82	2083.67	n/a	835	11,549
3.40	2084.25	n/a	2,383	13,932
3.97	2084.82	n/a	2,068	16,000
4.40	2085.25	n/a	2,390	18,390
5.50	2086.35	n/a	1,362	19,752

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	1.00	5.00	0.00	Crest Len (ft)	= 3.93	30.00	0.00	0.00
Span (in)	= 15.00	1.00	5.00	0.00	Crest El. (ft)	= 2085.25	2086.00	0.00	0.00
No. Barrels	= 1	1	2	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 2080.85	2080.85	2083.85	0.00	Weir Type	= 1	Broad		
Length (ft)	= 120.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.70	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by V	Vet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
		-											
0.00	0	2080.85	0.00	0.00	0.00		0.00	0.00					0.000
0.00	13	2080.85	0.00 ic	0.00 ic	0.00		0.00	0.00					0.000
0.01	25	2080.86	0.00 ic	0.00 ic	0.00		0.00	0.00					0.000
0.01	38	2080.86	0.00 ic	0.00 ic	0.00		0.00	0.00					0.000
0.02	50	2080.87	0.00 ic	0.00 ic	0.00		0.00	0.00					0.001
0.03	63	2080.88	0.00 ic	0.00 ic	0.00		0.00	0.00					0.001
0.03	76	2080.88	0.00 ic	0.00 ic	0.00		0.00	0.00					0.001
0.04	88	2080.88	0.00 ic	0.00 ic	0.00		0.00	0.00					0.001
0.04	101	2080.89	0.00 ic	0.00 ic	0.00		0.00	0.00					0.002
0.04	113	2080.89	0.00 ic	0.00 ic	0.00		0.00	0.00					0.002
0.05	126	2080.90	0.00 ic	0.00 ic	0.00		0.00	0.00					0.003
0.07	169	2080.92	0.00 ic	0.00 ic	0.00		0.00	0.00					0.004
0.09	212	2080.94	0.01 ic	0.01 ic	0.00		0.00	0.00					0.006
0.11	254	2080.96	0.01 ic	0.01 ic	0.00		0.00	0.00					0.007
0.13	297	2080.98	0.01 ic	0.01 ic	0.00		0.00	0.00					0.008
0.14	340	2081.00	0.01 ic	0.01 ic	0.00		0.00	0.00					0.008
0.16	383	2081.01	0.01 ic	0.01 ic	0.00		0.00	0.00					0.009
0.18	426	2081.03	0.01 ic	0.01 ic	0.00		0.00	0.00					0.010
0.20	468	2081.05	0.01 ic	0.01 ic	0.00		0.00	0.00					0.011
0.22	511	2081.07	0.01 ic	0.01 ic	0.00		0.00	0.00					0.011
0.24	554	2081.09	0.01 ic	0.01 ic	0.00		0.00	0.00					0.012
0.26	595	2081.11	0.01 ic	0.01 ic	0.00		0.00	0.00					0.012
0.27	635	2081.12	0.01 ic	0.01 ic	0.00		0.00	0.00					0.013
0.29	676	2081 14	0.01 ic	0.01 ic	0.00		0.00	0.00					0.013
0.31	716	2081 16	0.01 ic	0.01 ic	0.00		0.00	0.00					0.013
0.32	757	2081 18	0.01 ic	0.01 ic	0.00		0.00	0.00					0.014
0.34	798	2081.10	0.01 ic	0.01 ic	0.00		0.00	0.00					0.014
0.36	838	2081 21	0.01 ic	0.01 ic	0.00		0.00	0.00					0.015
0.38	870	2081.21	0.07 ic	0.01 ic	0.00		0.00	0.00					0.015
0.30	019	2001.20	0.02 ic	0.02 ic	0.00		0.00	0.00					0.015
0.59	919	2001.24	0.02 10	0.02 10	0.00		0.00	0.00					0.015

The Farm Underground Det Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.41	960	2081.26	0.02 ic	0.02 ic	0.00		0.00	0.00					0.016
0.44	1,023	2081.29	0.02 ic	0.02 ic	0.00		0.00	0.00					0.016
0.47	1,086	2081.32	0.02 ic	0.02 ic	0.00		0.00	0.00					0.017
0.49	1,150	2081.34	0.02 ic	0.02 ic	0.00		0.00	0.00					0.017
0.52	1,213	2081.37	0.02 ic	0.02 ic	0.00		0.00	0.00					0.018
0.55	1,270	2081.40	0.02 lC	0.02 IC 0.02 ic	0.00		0.00	0.00					0.018
0.50	1,339	2081.45	0.02 ic	0.02 ic	0.00		0.00	0.00					0.019
0.63	1,466	2081.49	0.02 ic	0.02 ic	0.00		0.00	0.00					0.020
0.66	1,529	2081.51	0.02 ic	0.02 ic	0.00		0.00	0.00					0.020
0.69	1,592	2081.54	0.02 ic	0.02 ic	0.00		0.00	0.00					0.021
0.72	1,710	2081.57	0.02 ic	0.02 ic	0.00		0.00	0.00					0.021
0.74	1,828	2081.59	0.02 ic	0.02 ic	0.00		0.00	0.00					0.022
0.77	1,946	2081.62	0.02 ic	0.02 ic	0.00		0.00	0.00					0.022
0.80	2,064	2081.65	0.02 IC	0.02 IC	0.00		0.00	0.00					0.023
0.62	2,102	2001.00	0.02 lC	0.02 ic	0.00		0.00	0.00					0.023
0.00	2,300	2081.70	0.02 ic	0.02 ic	0.00		0.00	0.00					0.023
0.91	2,536	2081.76	0.03 ic	0.02 ic	0.00		0.00	0.00					0.024
0.93	2,654	2081.78	0.03 ic	0.02 ic	0.00		0.00	0.00					0.024
0.96	2,772	2081.81	0.03 ic	0.02 ic	0.00		0.00	0.00					0.025
1.02	3,053	2081.87	0.03 ic	0.03 ic	0.00		0.00	0.00					0.026
1.07	3,333	2081.92	0.03 ic	0.03 ic	0.00		0.00	0.00					0.026
1.13	3,614	2081.98	0.03 ic	0.03 ic	0.00		0.00	0.00					0.027
1.19	3,894	2082.04	0.03 ic	0.03 IC	0.00		0.00	0.00					0.028
1.25	4,175	2082.09	0.03 IC	0.03 IC	0.00		0.00	0.00					0.028
1.30	4,430	2082.15	0.03 ic	0.03 ic	0.00		0.00	0.00					0.029
1.00	5 017	2082.21	0.03 ic	0.03 ic	0.00		0.00	0.00					0.030
1.47	5,297	2082.32	0.03 ic	0.03 ic	0.00		0.00	0.00					0.031
1.53	5,578	2082.38	0.03 ic	0.03 ic	0.00		0.00	0.00					0.032
1.60	5,898	2082.45	0.03 ic	0.03 ic	0.00		0.00	0.00					0.032
1.67	6,218	2082.52	0.03 ic	0.03 ic	0.00		0.00	0.00					0.033
1.73	6,538	2082.58	0.03 ic	0.03 ic	0.00		0.00	0.00					0.034
1.80	6,858	2082.65	0.03 ic	0.03 ic	0.00		0.00	0.00					0.035
1.87	7,178	2082.72	0.04 IC	0.04 IC	0.00		0.00	0.00					0.035
2.01	7,497	2082.79	0.04 ic	0.04 ic	0.00		0.00	0.00					0.030
2.01	8 137	2082.00	0.04 ic	0.04 ic	0.00		0.00	0.00					0.037
2.14	8.457	2082.99	0.04 ic	0.04 ic	0.00		0.00	0.00					0.038
2.21	8,777	2083.06	0.04 ic	0.04 ic	0.00		0.00	0.00					0.038
2.25	8,971	2083.10	0.04 ic	0.04 ic	0.00		0.00	0.00					0.039
2.29	9,164	2083.14	0.04 ic	0.04 ic	0.00		0.00	0.00					0.039
2.34	9,358	2083.19	0.04 ic	0.04 ic	0.00		0.00	0.00					0.039
2.38	9,552	2083.23	0.04 ic	0.04 ic	0.00		0.00	0.00					0.040
2.42	9,746	2083.27	0.04 IC	0.04 IC	0.00		0.00	0.00					0.040
2.40	9,939	2003.31	0.04 ic	0.04 ic	0.00		0.00	0.00					0.041
2.50	10,133	2003.33	0.04 ic	0.04 ic	0.00		0.00	0.00					0.041
2.59	10,520	2083.44	0.04 ic	0.04 ic	0.00		0.00	0.00					0.042
2.63	10,714	2083.48	0.04 ic	0.04 ic	0.00		0.00	0.00					0.042
2.65	10,798	2083.50	0.04 ic	0.04 ic	0.00		0.00	0.00					0.042
2.67	10,881	2083.52	0.04 ic	0.04 ic	0.00		0.00	0.00					0.042
2.69	10,965	2083.54	0.04 ic	0.04 ic	0.00		0.00	0.00					0.042
2.71	11,048	2083.56	0.04 ic	0.04 ic	0.00		0.00	0.00					0.043
2.72	11,132	2083.57	0.04 ic	0.04 IC	0.00		0.00	0.00					0.043
2.74	11,215	2083.59	0.04 IC	0.04 IC	0.00		0.00	0.00					0.043
2.70	11,299	2003.01	0.04 IC	0.04 IC	0.00		0.00	0.00					0.043
2.70	11 466	2083.65	0.04 ic	0.04 ic	0.00		0.00	0.00					0.043
2.82	11.549	2083.67	0.04 ic	0.04 ic	0.00		0.00	0.00					0.043
2.88	11,787	2083.73	0.04 ic	0.04 ic	0.00		0.00	0.00					0.044
2.94	12,026	2083.79	0.05 ic	0.04 ic	0.00		0.00	0.00					0.044
2.99	12,264	2083.84	0.05 ic	0.04 ic	0.00		0.00	0.00					0.045
3.05	12,502	2083.90	0.07 ic	0.05 ic	0.02 ic		0.00	0.00					0.061
3.11	12,741	2083.96	0.12 ic	0.05 ic	0.07 ic		0.00	0.00					0.111
3.17	12,979	2084.02	0.20 ic	0.05 ic	0.15 ic		0.00	0.00					0.191
3.23	13,217	2084.08	0.30 IC	0.05 IC	0.25 10		0.00	0.00					0.293
3.20 3.21	13,455	2084.14	0.41 IC 0.53 io	0.05 IC	0.30 IC		0.00	0.00					0.407
3 40	13,094	2004.19	0.00 ic	0.05 ic	0.40 IC 0.58 ic		0.00	0.00					0.020
3.46	14.139	2084.31	0.72 ic	0.05 ic	0.65 ic		0.00	0.00					0.701
	.,												

Continues on next page ...

The Farm Underground Det Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3 51	14 346	2084 36	0 79 ic	0 05 ic	0 73 ic		0.00	0.00					0 772
3 57	14 552	2084 42	0.86 ic	0.05 ic	0 79 ic		0.00	0.00					0.837
3 63	14 759	2084 48	0.90 ic	0.05 ic	0.85 ic		0.00	0.00					0.898
3.68	14 966	2084 53	0.97 ic	0.05 ic	0.91 ic		0.00	0.00					0.953
3.74	15,173	2084.59	1.01 ic	0.05 ic	0.96 ic		0.00	0.00					1.006
3 80	15 380	2084 65	1 06 ic	0.05 ic	1 01 ic		0.00	0.00					1 056
3.86	15,586	2084.71	1.10 ic	0.05 ic	1.06 ic		0.00	0.00					1.104
3.91	15,793	2084.76	1.18 ic	0.05 ic	1.10 ic		0.00	0.00					1.150
3.97	16.000	2084.82	1.22 ic	0.05 ic	1.15 ic		0.00	0.00					1.195
4.01	16.239	2084.86	1.23 ic	0.05 ic	1.18 ic		0.00	0.00					1.227
4.06	16,478	2084.91	1.27 ic	0.05 ic	1.21 ic		0.00	0.00					1.258
4.10	16,717	2084.95	1.31 ic	0.05 ic	1.24 ic		0.00	0.00					1.289
4.14	16,956	2084.99	1.32 ic	0.05 ic	1.27 ic		0.00	0.00					1.319
4.19	17,195	2085.03	1.36 ic	0.05 ic	1.30 ic		0.00	0.00					1.348
4.23	17,434	2085.08	1.41 ic	0.05 ic	1.33 ic		0.00	0.00					1.376
4.27	17,673	2085.12	1.41 ic	0.05 ic	1.35 ic		0.00	0.00					1.404
4.31	17,912	2085.16	1.45 ic	0.05 ic	1.38 ic		0.00	0.00					1.432
4.36	18,151	2085.21	1.46 ic	0.05 ic	1.41 ic		0.00	0.00					1.458
4.40	18,390	2085.25	1.50 ic	0.05 ic	1.43 ic		0.00	0.00					1.485
4.51	18,526	2085.36	2.03 ic	0.05 ic	1.50 ic		0.48	0.00					2.028
4.62	18,662	2085.47	2.98 ic	0.05 ic	1.56 ic		1.35	0.00					2.961
4.73	18,799	2085.58	4.17 ic	0.05 ic	1.62 ic		2.48	0.00					4.152
4.84	18,935	2085.69	5.54 oc	0.04 ic	1.68 ic		3.82	0.00					5.535
4.95	19,071	2085.80	5.63 oc	0.04 ic	1.73 ic		3.85 ic	0.00					5.626
5.06	19,207	2085.91	6.05 oc	0.04 ic	1.79 ic		4.22 ic	0.00					6.045
5.17	19,343	2086.02	6.43 oc	0.04 ic	1.84 ic		4.56 ic	0.30					6.739
5.28	19,480	2086.13	6.77 oc	0.04 ic	1.86 ic		4.87 ic	4.74					11.51
5.39	19,616	2086.24	7.04 oc	0.04 ic	1.84 ic		5.17 ic	11.82					18.86
5.50	19,752	2086.35	7.29 oc	0.04 ic	1.81 ic		5.44 ic	20.69					27.99

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 20

The Farm Det. Out

Hydrograph type =	= Reservoir	Peak discharge	= 0.042 cfs
Storm frequency =	= 1 yrs	Time to peak	= 1442 min
Time interval :	= 2 min	Hyd. volume	= 10,338 cuft
Inflow hyd. No.	= 19 - The Farm Basin Inflow	Max. Elevation	= 2083.50 ft
Reservoir name	= The Farm Underground Det	Max. Storage	= 10,783 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 20

The Farm Det. Out

Hydrograph type	= Reservoir	Peak discharge	= 1.203 cfs
Storm frequency	= 10 yrs	Time to peak	= 744 min
Time interval	= 2 min	Hyd. volume	= 24,576 cuft
Inflow hyd. No.	= 19 - The Farm Basin Inflow	Max. Elevation	= 2084.83 ft
Reservoir name	= The Farm Underground Det	Max. Storage	= 16,058 cuft

Drainage Area Runoff and Time of Concentration

Precipitation Data				
Return				
Frequency	P (in.)			
1 Yr.	2.26			
2 Yr.	2.73			
10 Yr.	4.06			
100 Yr.	6.44			

The farm "Dribuse is used in the family of															
Tree of Concentration, T _c Composite Curve Number (CN) Travel CN Area (Ac.) CN ^A CN 75 0.57 77.5 CN 75 0.77 57.75 CN 75 0.77 57.75 CN 70 0.55 1 1 CN 1.32 0.000 3 2	Drainage Area:	"The Farm" Dr	rainage /	Areas											
Undetailed areas total CN Area (A.C.) CN*A CN Area (A.C.) CN*A Soft 1 Land Length Roughness Slope Time, Tr, (N/T) CN 75 0.77 57.75 1 2		Com	posite C	urve Number ((CN)	l		٦	Time of Con	centratio	n, T _c				
Image: State in the state in thestate in the state in the state in the state in the st						l							Travel		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						l	Flow		Land	Length	Roughness	Slope	Time, T _t		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			CN	Area (Ac.)	CN*A		Segment	Flow Regime	Cover	(ft)	Coeff., n	(ft/ft)	(min.)		
CN 75 0.7 57.75 CN 0.00 CN 2 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>		CN ₁	79	0.55	43.45	l	1								
Undetailed areas total CN3 0.00 CN4 0.00 CN3 0.00 CN4 0.00 CN3 0.00 CN4 0.00 CN3 0.00 Total 1.32 101.20 Composite CN = 77 Storage (in,) S=1000/(N-10 2.99 2.99 Initial abstraction (in,), 1=0.25 0.60 0.60 Runoff volume (ac-ft), RV = Q/12*A 0.07 0.20 0.43 Flow rate (r5), g _{pen} , from hydrograph 1.20 3.89 Hydrograph No.: Contributes to 21 Notes: See The Farm' calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Travel CN1 91 2.67 242.97 CN3 0.00 3 Cover (t1) Cert, (trin, 0, (trin, 0) CN4 0.00 3 Cover (t1) Cert, (trin, 0) CN3 0.00 3 Cover (t1) Segment Flow Regime CON3 0.00 3 Cover (t1) Cert, (trin) S.8 <tr< td=""><td></td><td>CN₂</td><td>75</td><td>0.77</td><td>57.75</td><td>l</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		CN ₂	75	0.77	57.75	l	2								
Undetained areas total CN ₁ 0.00 0.00 Total - 1.32 101.20 Composite CN = 77 Composite CN = 77 Composite CN = 77 Storage (in,) S=1000/CN-10 2.99 2.99 Initial abstraction (in,), I ₂ -0.25 0.60 0.60 Runoff depti (in), Q=(P-0.25)?((P-1)/2.45 0.07 0.20 0.43 Flow rate (cS), Q _{mask} from hydrograph 1.20 3.89 Hydrograph No: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN. Notes: Sione Contributes to 21 Flow rate (cS), Q _{mask} from hydrograph 1.20 3.89 Hydrograph No: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN. Notes: Sione Travel Flow Regime Cover (ft) Coeff., n (ft/ft) CN Area (AC.) CN*A 0.000 GN 4 I I I I I I I I I I I I		CN ₃			0.00	l	3								
Undetained areas total CN3 I IOLO Total - 1.32 101.20 6 Other Tt I 8.5 Generational Composite CN = 77 Tr Total 8.6 Composite CN 77 77 77 77 8.6 Storage (In,) 5=1000/CN+10 2.99 2.99 2.99 1.86 3.87 Runoff volume (ac-ft), RV = Q/12^A 0.07 0.02 0.43 4.8 4.8 Flow rate (CS), Quash for hydrograph 1.20 3.89 Hydrograph No:: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Hydrograph No:: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN, CO2 (ft, 1) Coeff., 1 (ft/ft) CN Area (AC.) CN*A Composite Curve Number (CN) Segment Flow Regime Coeff., 1 (ft/ft) CN Area (AC.) CN*A 0.000 CN I I I I I I		CN ₄			0.00	l	4								
Undetained areas total Total - 1.32 101.20 Image: Storage (in:) S=1000/CN:10 77 10 Yr. 100 Yr. Total Time of Concentration, T _c (min.) 8.6 Image: Storage (in:) S=1000/CN:10 2.99 2.99 2.99 1.010 Yr. 100 Yr. Image: Storage (in:) S=1000/CN:10 2.99 2.99 2.99 2.99 1.0120 8.6 Runoff depth (in.), 2(=P0.25)? (IPL)+(S) 0.50 0.60 0.60 0.60 0.60 Runoff depth (in.), 2(=P0.25)? (IPL)+(S) 0.59 1.86 3.87 Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Correct (tr, (tr, (tr, (min.)) Travel CN1 91 2.67 242.97 1 Land Length Roughness Slope Time, Travel CN4 0.00 CN3 0.00 S Image: Consposite CN = 01 Image: Consposite CN = 01 Image: CN = 01 S </td <td></td> <td>CN₅</td> <td></td> <td></td> <td>0.00</td> <td>l</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		CN ₅			0.00	l	5								
Composite CN = 77 Total Time of Concentration, T _c (min.) 8.6 Runoff 1 Yr. 10 Yr. 100 Yr. 77 <	Undetained	Total	-	1.32	101.20	l	6	Other Tt					8.6		
Composite CN Tr TO Tr Tr Storage (in.) S=1000/CN-10 2.99 2.99 2.99 10114 abstration (in.), 1, e0.25 0.60 0.60 0.60 0.60 Runoff depth (in.), 0, e(P-0.2S) ² /((P1,)+S) 0.59 1.86 3.87 Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Hydrograph No.: Contributes to 21 Notes: Composite Curve Number (CN) Time of Concentration, Tc Travel Flow Land Length Rungthess Slope Travel CN Area (Ac.) CN*A 0.00 3 Land Length Rungthess Slope Travel GNA 0.000 CN 2 Land Land Land Land Land Land Land	areas total		Co	mposite CN =	77	l			Total Tim	ne of Con	centration, T	_c (min.)	8.6		
Runoff I Yr. 10 Yr. 77 77 Storage (m.) S=1000/CN-10 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.99 100 Yr. Provide Colspan="2">Provide Colspan="2">Provide Colspan="2" Provide Colspan="2" Provide Colspan="2" <th <="" colspan="2" t<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>														
Composite CN 17 77 77 Storage (in.) S=1000/CN-10 2.99 2.99 2.99 2.99 Initial abstraction (in.), I ₂ =0.25 0.60 0.60 0.60 Runoff depth (in.), Q=(P-0.2S) ⁷ /([P-I ₂)+S] 0.59 1.86 3.87 Runoff volume (ac-ft), RV = Q/12*A 0.07 0.20 0.43 Flow rate (cfs), q _{peak} from hydrograph 1.20 3.89 Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Flow Regime Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Travel CN1 91 2.67 242.97 Land Length Roughness Slope Time, T, Segment Flow Regime Cover I Image: Cover (ft) Coeff., n (ft/ft) Image: Cover Image: Cover (ft) Coeff., n (ft/ft) Image: Cover (ft) Image: Cover (ft) <td></td> <td> </td> <td></td> <td></td> <td>Runoff</td> <td>1 Vr</td> <td>10 Vr</td> <td>100 Vr</td> <td>4</td> <td></td> <td></td> <td></td> <td></td>					Runoff	1 Vr	10 Vr	100 Vr	4						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Com	nacita CN		1 Yr.	10 Yr.	100 Yr.	-						
Composite Curve Number (CN) L.33 L.33 <thlist andis="" for="" in="" int<="" inter="" interval="" td="" the=""><td></td><td>Str</td><td>unage (in</td><td>VS=1000/CN-</td><td>10</td><td>2 99</td><td>2 99</td><td>2.99</td><td>-</td><td></td><td></td><td></td><td></td></thlist>		Str	unage (in	VS=1000/CN-	10	2 99	2 99	2.99	-						
Initial additional (in,), q=0.22)?/[[P-l_a],*5] 0.50 0.50 0.50 Runoff depth (in,), q=(P-0.25)?/[[P-l_a],*5] 0.59 1.86 3.87 Runoff volume (ac-ft), R v = 0/12*A 0.07 0.20 0.43 Flow rate (cfs), q _{peak} from hydrograph 1.20 3.89 Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Hydrograph No.: Contributes to 21 Notes: See "The Farm" calcs by others. CN1=DA1 post weighted CN, CN2=DA3 post weighted CN Hydrograph No.: Contributes to 21 Composite Curve Number (CN) Time of Concentration, Te Travel Travel CN1 91 2.67 242.97 1 Land Length Roughness Slope Time, Tr CN2 0.000 0.4 0.00 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0			al abstra	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	1.25	0.60	0.60	0.60	-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Bupoff de	anth (in)	$\frac{1}{10000000000000000000000000000000000$	۰.25 [/۲.۱.۱۰۶]	0.00	1 06	2 07	-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				$\frac{1}{(200 \text{ ft})}$ $\frac{1}{(200 \text{ ft})}$ $\frac{1}{(200 \text{ ft})}$ $\frac{1}{(200 \text{ ft})}$	(P-1a)+3]	0.35	0.20	0.42	-						
Indef rate (bis), dpeak from hydrograph 1.20 3.32 inversion of the second s		Elow rat	Volume	$\frac{(ac-ii)}{c}$, $\pi v = u$	/12 [·] A	1.20	2.89	0.45		nh No ·	Contributes	+- 21			
Area to "The Farm" detention Composite Curve Number (CN) Time of Concentration, T _c Travel Time, T _t CN Area (Ac.) CN*A Flow Land Length Roughness Slope Travel CN1 91 2.67 242.97 CN Cover (ft) Coeff., n (ft/ft) (min.) CN3 0.00 3 0.00 3 0.00 3 0.00 1 0 0 0 0 CN4 0.000 CN5 0.000 3 0.00 3 0		Notec		Ipeak ITOITTIYUT	by others CN	1-DA1 post	s.os			рн мо см	Contributes				
Time of Concentration, T _c Composite Curve Number (CN) Time of Concentration, T _c CN Area (Ac.) CN*A CN1 91 2.67 242.97 CN2 0.00 2 0 0 CN3 0.00 3 0 0 CN4 0.00 3 0 0 0 CN3 0.00 3 0 0 0 0 CN4 0.00 0 3 0 0 0 0 CN3 0.00 0 4 0 <t< td=""><td></td><td>INDIES.</td><td>See in</td><td></td><td>by others. Civ.</td><td>1-DAT 0031</td><td>Weighted C</td><td>N, CN2-DA3 p03</td><td>I Weighten</td><td>_11</td><td></td><td></td><td></td></t<>		INDIES.	See in		by others. Civ.	1-DAT 0031	Weighted C	N, CN2-DA3 p03	I Weighten	_11					
Kea to "The Farm" detention Composite CN = 91 Segment Flow Regime Land Length Cover Roughness Cover Slope Time, Ti		Com	posite C	urve Number ((CN)		1		Time of Con	centratio	n, T _c				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				ļ ,		1							Travel		
$ \begin{array}{ c c c c c c } \hline CN & Area (Ac.) & CN*A \\ \hline CN_1 & 91 & 2.67 & 242.97 \\ \hline CN_2 & 0 & 0.00 \\ \hline CN_2 & 0 & 0.00 \\ \hline CN_3 & 0 & 0.00 \\ \hline CN_4 & 0 & 0.00 \\ \hline CN_5 & 0 & 0.00 \\ \hline Total & - & 2.67 & 242.97 \\ \hline Total & - & 2.67 & 242.97 \\ \hline \hline Composite CN = & 91 \\ \hline $						l	Flow		Land	Length	Roughness	Slope	Time, T _t		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			CN	Area (Ac.)	CN*A	1	Segment	Flow Regime	Cover	(ft)	Coeff., n	(ft/ft)	(min.)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		CN ₁	91	2.67	242.97	1	1								
CN_3 0.00 CN_4 0.00 CN_5 0.00 CN_5 0.00 $Total$ - 2.67 242.97 G G G G G G $Total$ - 2.67 242.97 G G G G G $Composite CN = 91$ G		CN ₂			0.00	1	2								
Area to "The Farm" detention CN_4 0.00 CN_5 0.00 $Total$ - 2.67 242.97 G $Other Tt$ G G $Composite CN = 91$ G G G $Composite CN = 91$ G G G G $Composite CN = 91$ G G G G G $Composite CN = 91$ G G G G G G $VRRM CN^*$ 91 91 91 91 91 91 S $Storage (in.) S=1000/CN-10$ 0.99 0.99 0.99 0.99 $BMPs$ are utilized $Initial abstraction (in.), I_a=0.25$ 0.20 0.20 0.20 0.20 0.20 $Runoff depth (in.), Q=(P-0.2S)^2/[(P-I_a)+S]$ 1.39 3.07 5.39 Sag $Hydrograph$ No.: 19 $Hydrograph No.: 19 13.12 19 10 10 10 $		CN ₃			0.00	l	3								
Area to "The Farm" detention CN_5 0.005 d d d Total-2.67242.976Other Tt5.8Composite CN = 91Total Time of Concentration, T _c (min.)5.8Total Time of Concentration, T _c (min.)5.8VRRM CN*919191*If different from Composite CN, runoff reductionStorage (in.) S=1000/CN-100.990.990.99Initial abstraction (in.), I _a =0.2S0.200.200.20BMPs are utilizedRunoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]1.393.075.39Hydrograph No.:19Notes:See "The Earm" calcs by others:0.11=DA3 post weighted CNHydrograph No.:19		CN ₄			0.00	l	4								
Area to "The Farm" detention Total - 2.67 242.97 6 Other Tt Image: Composite CN = 91 5.8 Gomposite CN = 91 Total Time of Concentration, T _c (min.) 5.8 Total Time of Concentration, T _c (min.) 5.8 Total Time of Concentration, T _c (min.) 5.8 Runoff VRRM CN* 91 91 91 91 91 Storage (in.) S=1000/CN-10 0.99 0.99 0.99 0.99 BMPs are utilized Initial abstraction (in.), l _a =0.2S 0.20 0.20 0.20 0.20 0.20 0.20 BMPs are utilized Hydrograph Hydrograph Hydrograph Hydrograph 19 Hydrograph No.: 19 19 Hydrograph No.: 19 10 Hydrograph No.: 19 10 Hydrograph No.: 19 Hydrograph No.: 19 Hydrograph No.: 19 10 Hydrograph No.: 19 10 Hydrograph No.		CN ₅			0.00	1	5								
Total Time of Concentration, T_c (min.)5.8Farm" detentionTotal Time of Concentration, T_c (min.)5.8RunoffVRRM CN*919191Storage (in.) S=1000/CN-100.990.990.99Initial abstraction (in.), I_a =0.2S0.200.200.20Runoff depth (in.), Q=(P-0.2S) ² /[(P-I_a)+S]1.393.075.39Runoff volume (ac-ft), RV = Q/12*A0.310.681.20Hydrograph No.:191919Notes:See "The Earm" calcs by others: CN1=DA3 post weighted CNNotes:	Area to "The	Total	<u> </u>	2.67	242.97	l	6	Other Tt					5.8		
Runoff *If different from Composite CN, runoff reduction VRRM CN* 91 91 91 Storage (in.) S=1000/CN-10 0.99 0.99 0.99 BMPs are utilized Initial abstraction (in.), I_a =0.25 0.20 0.20 0.20 BMPs are utilized Runoff depth (in.), Q=(P-0.2S) ² /[(P-I_a)+S] 1.39 3.07 5.39 5.39 Runoff volume (ac-ft), RV = Q/12*A 0.31 0.68 1.20 Hydrograph No.: 19	Farm" detention		Co	mposite CN =	91				Total Tim	ne of Con	centration, T	_շ (min.)	5.8		
Runoff I Yr. 100 Yr. VRRM CN* 91 91 91 Storage (in.) S=1000/CN-10 0.99 0.99 0.99 0.99 Initial abstraction (in.), I _a =0.2S 0.20 0.20 0.20 0.20 Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S] 1.39 3.07 5.39 BMPs are utilized Runoff volume (ac-ft), RV = Q/12*A 0.31 0.68 1.20 Hydrograph No.: 19															
Image: Non-state of the state of the s					Runoff	1 Vr	10 Vr	100.1/2	_						
Storage (in.) S=1000/CN-10 0.99 0.99 0.99 0.99 BMPs are utilized Initial abstraction (in.), I_a =0.2S 0.20 0.20 0.20 1.39 3.07 5.39 Runoff depth (in.), Q=(P-0.2S) ² /[(P-I_a)+S] 1.39 3.07 5.39 1.20 Hydrograph No.: 19 Notes: See "The Farm" cales by others: CN1=DA3 post weighted CN See "The Farm" cales by others: CN1=DA3 post weighted CN Hydrograph No.: 19						 	<u>10 11.</u>	91	+If differen	at from C	amposita CN	rupoff	roduction		
Initial abstraction (in.), I _a =0.2S 0.20 0.20 0.20 Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S] 1.39 3.07 5.39 Runoff volume (ac-ft), RV = Q/12*A 0.31 0.68 1.20 Flow rate (cfs), q _{peak} from hydrograph 6.19 13.12 Hydrograph No.: 19		Str		1 S=1000/CN-	10	0.00	0 00	0.99		It II UIII C	omposite Civ,	, runon	reduction		
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S] 1.39 3.07 5.39 Runoff volume (ac-ft), RV = Q/12*A 0.31 0.68 1.20 Flow rate (cfs), q _{peak} from hydrograph 6.19 13.12 Hydrograph No.: 19			al abstra	$\frac{1}{1000}$ (in) 1 =(1 25	0.55	0.55	0.55		utinzeu					
Ruhom depth (in.), $Q = (P - 0.2S) / [(P - l_a) + S]$ 1.393.075.39Runoff volume (ac-ft), RV = Q/12*A0.310.681.20Flow rate (cfs), q_{peak} from hydrograph6.1913.12Hydrograph No.:19Notes:See "The Farm" calcs by othersCN1=DA3 post weighted CN19				$\frac{1}{2}$	······································	1 20	2.07	5.20	-						
Runom volume (ac-m), RV = Q/12*A 0.31 0.08 1.20 Flow rate (cfs), q _{peak} from hydrograph 6.19 13.12 Hydrograph No.: 19 Notes: See "The Farm" calcs by others: CN1=DA3 post weighted CN		Runon ue	ptn (m.)	, Q=(P-0.25) / [$[(P-I_a)+S]$	1.39	3.07	5.39	_						
Plow rate (cis), q _{peak} iron iron ographication in the second se		Elow rat	Volume	$\frac{(ac-ii)}{c}$, $\pi v = Q$	/12 [·] A	6.10	12 12	1.20		sob No ·	10				
		Notes	See "Th	Peak ITOITTIYUT	by others CN	1=D43 post	uveighted (`N		ipii No					

Drainage Area Runoff and Time of Concentration

Drainage Area: Undetained Farm and other contrib. offsite flows PRE & POST

Composite Curve Number (CN)						Notes:
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN_1	N/A	"Farm" DA1 post CN	79	0.55	43.45	-CN1 and CN2 are pulled from
CN ₂	N/A	"Farm" DA3 post CN	75	0.77	57.75	"The Farm" SWM plan. "The
CN ₃	D	Imperv.	98	1.25	122.30	Farm" DA1 and DA3 are
CN ₄	D	Open space	80	0.72	57.59	undetained by the
CN ₅	D	Brush (good)	73	1.53	111.33	development. DA2 is
CN ₆	С	Imperv.	98	0.28	27.15	routed through "The Farm's"
CN ₇					0.00	SWM improvements.
CN ₈					0.00	-Remaining CNs are measured
CN ₉					0.00	areas from offsite areas, incl.
CN ₁₀					0.00	460 and its median.
Total 5.09					419.57	
Composite CN =					82	

Time of Concentration, T _c							
	2 yr. Precip. (in.) = 2.73						
				Roughness	Slope	Travel Time, T _t	
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)	
1	Other Tt	Farm Tc				8.6	
2							
3							
4							
5							
6							
7							
8							
9							
10							
		Tota	l Time of Co	ncentration, 1	Γ _c (min.) =	8.6	

Runoff							
	1 Yr.	10 Yr.	100 Yr.				
Precipitation (in.), P	2.26	4.06	6.44				
Composite CN	82	82	82				
Storage (in.) S=1000/CN-10	2.20	2.20	2.20				
Initial abstraction (in.), I _a =0.2S	0.44	0.44	0.44				
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.83	2.25	4.39				
Runoff volume (ac-ft), RV = Q/12*A	0.35	0.96	1.86				
Flow rate (cfs), q _{peak} from hydrograph	6.64	18.18	34.74				
Hydrograph Number:	21						

١y 'Ri ah

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 21

Undet. Farm and other contrib. offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 6.643 cfs
Storm frequency	= 1 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 15,256 cuft
Drainage area	= 5.090 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.60 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 21

Undet. Farm and other contrib. offsite

Hydrograph type	= SCS Runoff	Peak discharge	= 18.18 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 41,653 cuft
Drainage area	= 5.090 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.60 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

Total Offsite thru Southern Reach

Hydrograph type Storm frequency	= Combine = 1 vrs	Peak discharge Time to peak	= 46.84 cfs = 720 min
Time interval	= 2 min	Hyd. volume	= 144,746 cuft
Inflow hyds.	= 18, 20, 21	Contrib. drain. area	= 5.090 ac

Tuesday, 11 / 1 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

Total Offsite thru Southern Reach

Hydrograph type Storm frequency	= Combine = 10 vrs	Peak discharge Time to peak	= 86.16 cfs = 720 min
Time interval	$= 2 \min$	Hyd. volume	= 341,950 cuft
Inflow hyds.	= 18, 20, 21	Contrib. drain. area	= 5.090 ac

Tuesday, 11 / 1 / 2022

Drainage Area Runoff and Time of Concentration

Drainage Area: PRE OTHER AREA CONTRIB. AT CONFLUENCE PREDEVELOPMENT

Composite Curve Number (CN)						Notes:
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN1	В	Open space	61	16.39	999.91	
CN ₂	C	Open space	74	12.04	890.69	
CN ₃	В	Imperv. (measured)	98	0.00	0.00	 "Other area" contributing at
CN ₄	C	Imperv. (measured)	98	0.00	0.00	the confluence of the north
CN ₅	В	Woods (good)	55	0.00	0.00	and south channels. Comprises
CN ₆	С	Woods (good)	70	0.00	0.00	onsite and offsite areas
CN ₇					0.00	downstream from detention
CN ₈					0.00	measures.
CN ₉					0.00	
CN ₁₀					0.00	
Total 28.43					1890.59]
			Со	mposite CN =	67	

Time of Concentration, T _c						
2 yr. Precip. (in.) = 2.73						
				Roughness	Slope	Travel Time, T _t
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)
1	Sheet Flow	Grass	100	0.24	0.05	10.7
2	Shallow Conc.	Grass	1100		0.091	3.8
3						
4						
5						
6						
7						
8						
9						
10						
		Tota	l Time of Co	ncentration, 1	「 _c (min.) =	14.5

Runoff							
	1 Yr.	10 Yr.	100 Yr.				
Precipitation (in.), P	2.26	4.06	6.44				
Composite CN	67	67	67				
Storage (in.) S=1000/CN-10	4.93	4.93	4.93				
Initial abstraction (in.), I _a =0.2S	0.99	0.99	0.99				
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.26	1.18	2.87				
Runoff volume (ac-ft), RV = Q/12*A	0.62	2.80	6.79				
Flow rate (cfs), q _{peak} from hydrograph	5.61	39.92	102.14				
Hydrograph Number:	26						

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 11 / 2 / 2022

Hyd. No. 26

PRE OTHER AREA CONTRIB. AT CONFLUENCE

Hydrograph type =	SCS Runoff	Peak discharge	= 5.612 cfs
Storm frequency =	= 1 yrs	Time to peak	= 12.10 hrs
Time interval =	= 2 min	Hyd. volume	= 26,375 cuft
Drainage area =	= 28.430 ac	Curve number	= 67
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 14.50 min
Total precip. =	= 2.26 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Wednesday, 11 / 2 / 2022

Hyd. No. 26

PRE OTHER AREA CONTRIB. AT CONFLUENCE

Hydrograph type	= SCS Runoff	Peak discharge	= 39.92 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 118,919 cuft
Drainage area	= 28.430 ac	Curve number	= 67
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 14.50 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 28

Ex. TOB Pond outfall routed to confluence

Hydrograph type = Storm frequency =	Reach 1 vrs	Peak discharge Time to peak	= 27.06 cfs = 742 min
Time interval =	2 min	Hyd. volume	= 231,957 cuft
Inflow hyd. No. =	11 - Predev Ex.TOB Pond Out	Section type	= Triangular
Reach length =	= 436.0 ft	Channel slope	= 2.0 %
Manning's n =	0.030	Bottom width	= 0.0 ft
Side slope =	3.0:1	Max. depth	= 0.0 ft
Rating curve x =	3.074	Rating curve m	= 1.333
Ave. velocity =	= 0.00 ft/s	Routing coeff.	= 0.9855

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 28

Ex. TOB Pond outfall routed to confluence

Hydrograph type	= Reach	Peak discharge	= 35.75 cfs
Storm frequency	= 10 yrs	Пте то реак	= 754 min
l ime interval	= 2 min	Hyd. volume	= 661,722 cuft
Inflow hyd. No.	= 11 - Predev Ex.TOB Pond Out	tSection type	= Triangular
Reach length	= 436.0 ft	Channel slope	= 2.0 %
Manning's n	= 0.030	Bottom width	= 0.0 ft
Side slope	= 3.0:1	Max. depth	= 0.0 ft
Rating curve x	= 3.074	Rating curve m	= 1.333
Ave. velocity	= 0.00 ft/s	Routing coeff.	= 1.0203

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 29

South Offsite Routed to Confluence

Hydrograph type Storm frequency	= Reach = 1 yrs	Peak discharge Time to peak	= 45.94 cfs = 722 min
Time interval	= 2 min	Hyd. volume	= 144,743 cuft
Inflow hyd. No.	= 22 - Total Offsite thru Souther	r SRetioh type	= Triangular
Reach length :	= 877.0 ft	Channel slope	= 2.3 %
Manning's n	= 0.030	Bottom width	= 0.0 ft
Side slope :	= 3.0:1	Max. depth	= 0.0 ft
Rating curve x	= 3.296	Rating curve m	= 1.333
Ave. velocity	= 6.40 ft/s	Routing coeff.	= 0.7372

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 29

South Offsite Routed to Confluence

Hydrograph type=Storm frequency=Time interval=Inflow hyd. No.=Reach length=Manning's p=	= Reach	Peak discharge	= 85.44 cfs
	= 10 yrs	Time to peak	= 722 min
	= 2 min	Hyd. volume	= 341,946 cuft
	= 22 - Total Offsite thru Souther	r Steetich type	= Triangular
	= 877.0 ft	Channel slope	= 2.3 %
	= 0.030	Bottom width	= 0.0 ft
Reach length=Manning's n=Side slope=Rating curve x=	= 877.0 ft	Channel slope	= 2.3 %
	= 0.030	Bottom width	= 0.0 ft
	= 3.0:1	Max. depth	= 0.0 ft
	= 3.296	Rating curve m	= 1.333
Ave. velocity	= 7.45 ft/s	Routing coeff.	= 0.8094

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 30

PRE COMBINED AT CONFLUENCE

Hydrograph type Storm frequency	= Combine = 1 vrs	Peak discharge Time to peak	= 73.96 cfs = 724 min
Time interval	= 2 min	Hyd. volume	= 403,075 cuft
Inflow hyds.	= 26, 28, 29	Contrib. drain. area	= 28.430 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 30

PRE COMBINED AT CONFLUENCE

Hydrograph type= CombinePeak discharge= 154.45 clsStorm frequency= 10 yrsTime to peak= 724 minTime interval= 2 minHyd. volume= 1,122,588 cuftInflow hyds.= 26, 28, 29Contrib. drain. area= 28.430 ac	Hydrograph type	= Combine	Peak discharge	= 154.45 cfs
	Storm frequency	= 10 yrs	Time to peak	= 724 min
	Time interval	= 2 min	Hyd. volume	= 1,122,588 cuft
	Inflow hyds.	= 26, 28, 29	Contrib. drain. area	= 28.430 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 31

COMBINED ROUTED TO PROPERTY LINE

Hydrograph type Storm frequency	= Reach = 1 vrs	Peak discharge Time to peak	= 73.47 cfs = 726 min
Time interval	= 2 min	Hyd. volume	= 403,072 cuft
Inflow hyd. No.	= 30 - PRE COMBINED AT COM	A Steddie N C/Ee	= Triangular
Reach length	= 775.0 ft	Channel slope	= 2.0 %
Manning's n	= 0.030	Bottom width	= 0.0 ft
Side slope	= 3.0:1	Max. depth	= 0.0 ft
Rating curve x	= 3.074	Rating curve m	= 1.333
Ave. velocity	= 6.81 ft/s	Routing coeff.	= 0.8254

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 31

COMBINED ROUTED TO PROPERTY LINE

Hydrograph type Storm frequency	= Reach = 10 yrs	Peak discharge Time to peak	= 154.33 cfs = 726 min
Time interval	= 2 min	Hyd. volume	= 1,122,586 cuft
Inflow hyd. No.	= 30 - PRE COMBINED AT COI	NSFeddtiEIN Cylipe	= Triangular
Reach length	= 775.0 ft	Channel slope	= 2.0 %
Manning's n	= 0.030	Bottom width	= 0.0 ft
Side slope	= 3.0:1	Max. depth	= 0.0 ft
Rating curve x	= 3.074	Rating curve m	= 1.333
Ave. velocity	= 8.18 ft/s	Routing coeff.	= 0.9158

Drainage Area Runoff and Time of Concentration

Drainage Area: PRE OTHER AREA CONTRIB. AT POA PREDEVELOPMENT

-	Composite Curve Number (CN)					Notes:
	Hydrologic Soil					
	Group	Land Cover	CN	Area, A (ac.)	CN*A	
CN ₁	В	Open space	61	8.08	492.75	
CN ₂	С	Open space	74	2.84	210.02	
CN ₃	В	Imperv. (measured)	98	0.00	0.00	
CN ₄	С	Imperv. (measured)	98		0.00	"Other area" contributing to
CN ₅	В	Woods (good)	55	2.34	128.48	the point of analysis.
CN ₆	C	Woods (good)	70	4.89	342.25	areas downstream from
CN ₇					0.00	detention measures.
CN ₈					0.00	
CN ₉					0.00	
CN ₁₀					0.00	
			Total	18.14	1173.50	
			Со	mposite CN =	65	

Time of Concentration, T _c						
	2 yr. Precip. (in.) = 2.73					
				Roughness	Slope	Travel Time, T _t
Flow Segment	Flow Regime	Land Cover	Length (ft)	Coeff., n	(ft/ft)	(min.)
1	Sheet Flow	Grass	100	0.24	0.05	10.7
2	Shallow Conc.	Grass	1100		0.091	3.8
3	Channel	Grass	834	0.03	0.019	3.7
4						
5						
6						
7						
8						
9						
10						
Total Time of Concentration, T _c (min.) =					18.2	

Runoff							
	1 Yr.	10 Yr.	100 Yr.				
Precipitation (in.), P	2.26	4.06	6.44				
Composite CN	65	65	65				
Storage (in.) S=1000/CN-10	5.38	5.38	5.38				
Initial abstraction (in.), I _a =0.2S	1.08	1.08	1.08				
Runoff depth (in.), Q=(P-0.2S) ² /[(P-I _a)+S]	0.21	1.06	2.68				
Runoff volume (ac-ft), RV = Q/12*A	0.32	1.61	4.05				
Flow rate (cfs), q _{peak} from hydrograph	2.10	20.29	55.29				
Hydrograph Number:	27						

'S' al

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 27

PRE OTHER AREA CONTRIB. AT POA

Hydrograph type	= SCS Runoff	Peak discharge	= 2.100 cfs
Storm frequency	= 1 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 14,030 cuft
Drainage area	= 18.140 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.20 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 27

PRE OTHER AREA CONTRIB. AT POA

Hydrograph type	= SCS Runoff	Peak discharge	= 20.29 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 70,027 cuft
Drainage area	= 18.140 ac	Curve number	= 65
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.20 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Drainage Area Runoff and Time of Concentration

Precipitation Data					
Return					
Frequency	P (in.)				
1 Yr.	2.26				
2 Yr.	2.73				
10 Yr.	4.06				
100 Yr.	6.44				

Drainage Area:	To Village Pha	ase 1 Por	nd									
	Com	posite C	urve Number ((CN)]		٦	ime of Con	centratio	n, T _c		
												Travel
						Flow		Land	Length	Roughness	Slope	Time, T _t
		CN	Area (Ac.)	CN*A		Segment	Flow Regime	Cover	(ft)	Coeff., n	(ft/ft)	(min.)
	CN ₁	75	8.20	615.26		1	Sheet Flow	Grass	100	0.24	0.087	8.6
	CN ₂			0.00		2	Shallow Conc.	Unpaved	120		0.16	0.3
	CN ₃			0.00		3	Channel	Grass	478	0.03	0.042	1.7
	CN ₄			0.00		4						
	CN ₅			0.00		5						
	Total	-	8.20	615.26		6						
Predev.		Co	omposite CN =	75				Total Time of Concentration, T _c (min.)			10.6	
												•
				Runoff	-	-						
					1 Yr.	10 Yr.	100 Yr.					
		Com	posite CN		75	75	75					
	St	orage (in	.) S=1000/CN-1	10	3.33	3.33	3.33					
	Init	al abstra	iction (in.), I _a =0	.25	0.67	0.67	0.67					
	Runoff d	epth (in.)), Q=(P-0.2S) ² /	[(P-I _a)+S]	0.52	1.71	3.66					
	Runof	f volume	(ac-ft), RV = Q	/12*A	0.35	1.17	2.50					
	Flow ra	te (cfs), d	q _{peak} from hydr	ograph	5.51	20.07		Hydrogra	ph No.:	24		
				75	CNI from)	m Village Ph. 1 calcs: 74				•		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 24

To Village Ph1 Pond 1

Hydrograph type	= SCS Runoff	Peak discharge	= 5.507 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 15,818 cuft
Drainage area	= 8.200 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.60 min
Total precip.	= 2.26 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 24

To Village Ph1 Pond 1

Hydrograph type	= SCS Runoff	Peak discharge	= 20.07 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 52,546 cuft
Drainage area	= 8.200 ac	Curve number	= 75
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.60 min
Total precip.	= 4.06 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 7 - Ex. Village Ph.1 Pond 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 2020.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	2020.00	8,930	0	0
2.00	2022.00	11,435	20,311	20,311
4.00	2024.00	14,161	25,545	45,856
6.00	2026.00	17,119	31,230	77,086
6.40	2026.40	17,672	6,957	84,044

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 15.00	8.00	0.00	0.00	Crest Len (ft)	= 3.50	20.00	0.00	0.00
Span (in)	= 15.00	8.00	0.00	0.00	Crest El. (ft)	= 2024.50	2025.50	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 0.90	2.50	3.33	3.33
Invert El. (ft)	= 2020.00	2021.00	0.00	0.00	Weir Type	= 1	Broad		
Length (ft)	= 60.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .012	.012	.013	n/a					
Orifice Coeff.	= 0.60	0.55	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage /	Storage / I	Discharge 1	Fable				. ,					,	
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	2020.00	0.00	0.00			0.00	0.00					0.000
0.20	2,031	2020.20	0.00	0.00			0.00	0.00					0.000
0.40	4,062	2020.40	0.00	0.00			0.00	0.00					0.000
0.60	6,093	2020.60	0.00	0.00			0.00	0.00					0.000
0.80	8,125	2020.80	0.00	0.00			0.00	0.00					0.000
1.00	10,156	2021.00	0.00	0.00			0.00	0.00					0.000
1.20	12,187	2021.20	0.13 ic	0.12 ic			0.00	0.00					0.124
1.40	14,218	2021.40	0.43 ic	0.43 ic			0.00	0.00					0.433
1.60	16,249	2021.60	0.80 ic	0.80 ic			0.00	0.00					0.800
1.80	18,280	2021.80	1.05 ic	1.05 ic			0.00	0.00					1.052
2.00	20,311	2022.00	1.29 ic	1.26 ic			0.00	0.00					1.258
2.20	22,866	2022.20	1.46 ic	1.43 ic			0.00	0.00					1.434
2.40	25,420	2022.40	1.59 ic	1.59 ic			0.00	0.00					1.591
2.60	27,975	2022.60	1.73 ic	1.73 ic			0.00	0.00					1.734
2.80	30,529	2022.80	1.87 ic	1.87 ic			0.00	0.00					1.866
3.00	33,084	2023.00	2.02 ic	1.99 ic			0.00	0.00					1.989
3.20	35,638	2023.20	2.11 ic	2.10 ic			0.00	0.00					2.105
3.40	38,193	2023.40	2.21 ic	2.21 ic			0.00	0.00					2.214
3.60	40,747	2023.60	2.32 ic	2.32 ic			0.00	0.00					2.319
3.80	43,302	2023.80	2.42 ic	2.42 ic			0.00	0.00					2.419
4.00	45,856	2024.00	2.52 ic	2.52 ic			0.00	0.00					2.516
4.20	48,979	2024.20	2.61 ic	2.61 ic			0.00	0.00					2.608
4.40	52,102	2024.40	2.70 ic	2.70 ic			0.00	0.00					2.698
4 60	55 225	2024 60	2 90 ic	2 78 ic			0.10	0.00					2 884
4 80	58 348	2024 80	3 40 ic	2 87 ic			0.52	0.00					3 385
5.00	61 471	2025.00	4 07 ic	2 95 ic			1 11	0.00					4 063
5.20	64 594	2025 20	4 87 oc	3 03 ic			1 84	0.00					4 873
5 40	67 717	2025 40	5 71 ic	3 02 ic			2 69	0.00					5 707
5.60	70 840	2025.60	6 61 ic	2.97 ic			3.63	1.57					8 177
5.80	73,963	2025.80	7.56 ic	2.90 ic			4 67	8 20					15 76
6.00	77 086	2026.00	8 57 ic	2 79 ic			5 79	17.68					26.25
6.04	77 782	2026.00	8 78 ic	2.76 ic			6.02	19.84					28.62
6.08	78 478	2026.04	8 99 ic	2.70 ic			6.26	22.09					31.02
6.12	70,470	2026.00	9 20 ic	2.70 ic			6.50	24.00					33.61
6.16	70,860	2020.12	9.20 iC	2.70 ic			6.74	24.42					36.23
6.20	80 565	2026.10	9.38 ic	2.67 ic			5.37 ic	29.30					37.35
6.24	81 261	2026.20	9.36 ic	2.00 ic			5.43 ic	20.00					30.00
6.24	81 957	2020.24	9.30 ic	2.7 1 ic			5.40 ic	34.46					42.60
0.20	01,007	2020.20	0.0410	2.1 + 10		131	0.4010	57.70			Continue	es on nex	t page

Ex. Village Ph.1 Pond 1 Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
6.32	82,652	2026.32	9.32 ic	2.76 ic			5.55 ic	37.15					45.46
6.36	83,348	2026.36	9.30 ic	2.78 ic			5.61 ic	39.90					48.30
6.40	84,044	2026.40	9.28 ic	2.80 ic			5.67 ic	42.69					51.17

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 25

Village Ph1 Pond 1 Out

Hydrograph type	= Reservoir	Peak discharge	= 0.132 cfs
Storm frequency	= 1 yrs	Time to peak	= 1204 min
Time interval	= 2 min	Hyd. volume	= 5,646 cuft
Inflow hyd. No.	= 24 - To Village Ph1 Pond 1	Max. Elevation	= 2021.21 ft
Reservoir name	= Ex. Village Ph.1 Pond 1	Max. Storage	= 12,245 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday, 04 / 29 / 2022

Hyd. No. 25

Village Ph1 Pond 1 Out

Hydrograph type	= Reservoir	Peak discharge	= 1.628 cfs
Storm frequency	= 10 yrs	Time to peak	= 778 min
Time interval	= 2 min	Hyd. volume	= 42,374 cuft
Inflow hyd. No.	= 24 - To Village Ph1 Pond 1	Max. Elevation	= 2022.45 ft
Reservoir name	= Ex. Village Ph.1 Pond 1	Max. Storage	= 26,076 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 11 / 1 / 2022

Hyd. No. 32

TOTAL AT PROP LINE PRE

Hydrograph type Storm frequency	= Combine = 1 vrs	Peak discharge Time to peak	= 75.45 cfs = 726 min
Time interval	$= 2 \min$	Hyd. volume	= 422,747 cuft
Inflow hyds.	= 25, 27, 31	Contrib. drain. area	= 18.140 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 32

TOTAL AT PROP LINE PRE

4,986 cuft 40 ac
2

